摘要
采用醇热法制备了有序球状介孔ZnO负载Fe⁃Cu⁃Zr复合催化剂,应用BET、SEM、XRD、XPS等对不同物质的量比催化剂进行了表征,研究了催化降解乙酸丁酯的活性及其影响因素,并推测了降解机理.结果表明,铁铜锆复合催化剂颗粒均匀,分散性较好,孔径大部分小于50 nm,比表面积为46~68 m^2·g^-1.各活性成分能够共存和协同发挥作用,铁、铜、锆离子吸附在氧化锌晶胞内,粒子间量子作用力促使晶胞表面积略有变大.锆能够提高3种活性成分间的作用力,可以调节表面电子密度,促使结合能向低的方向偏移,增强催化剂的氧化还原能力.随着锆比例的增大,催化剂的活性也随之增强;随着初始浓度、空速、相对湿度的增加,乙酸丁酯降解效率均有所下降.在乙酸丁酯初始浓度为2590 mg·m^-3、空速为9000 h-1的工况下,ZnO⁃3M催化剂降解乙酸丁酯的T50为116℃,T90为200℃,270℃时CO2转化率达96%,具有良好的低温催化活性和稳定性.乙酸丁酯催化氧化主要中间产物为少量的低级酸和低碳醇,最后被彻底氧化成CO2和H2O.
The ordered spherical mesoporous ZnO supported Fe⁃Cu⁃Zr composite catalyst was prepared by alcohol calorimetry.The catalysts with different molar ratios were characterized by BET,SEM,XRD and XPS.The activity and its effect of degradation of butyl acetate were studied.The degradation mechanism is inferred.The results show that the iron⁃copper⁃zirconium composite catalyst particles are uniform and the dispersion is good.The bore diameter is mostly in 50 nm,and the specific surface area is 46~68 m^2·g^-1.The active components of the catalyst can coexist and synergistically act.The iron⁃copper⁃zirconium ions are adsorbed in the zinc oxide unit cell,and the quantum force promotes to increase the surface area of the unit cell.As the zirconium element increases,the surface electron density can be adjusted,resulting in a shift of the binding energy in a low direction,thereby enhancing the redox ability of the catalyst,and the activity of the catalyst is also enhanced.The degradation efficiency of butyl acetate decreased with the increasing of the initial concentration,space velocity and relative humidity.At the initial concentration of 2590 mg·m^-3 and airspeed of 9000 h-1,the ZnO⁃3M catalyst degraded butyl acetate with T50=116℃,T90=200℃,CO2 conversion rate reaches 96%at 270℃,with good low temperature catalytic activity and stability.The main intermediate product of butyl acetate catalyzed oxidation is a small amount of lower acid and lower alcohol,and finally is completely oxidized to CO2 and H2O.
作者
王军伟
李济吾
蔡伟建
WANG Junwei;LI Jiwu;CAI Weijian(School of Environmental Science and Engineering,Zhejiang Gongshang University,Hangzhou 310018;School of Food and Biotechnology Engineering,Zhejiang Gongshang University,Hangzhou 310018)
出处
《环境科学学报》
CAS
CSCD
北大核心
2020年第5期1640-1649,共10页
Acta Scientiae Circumstantiae
基金
浙江省自然科学基金项目(No.LY20E080003)。