期刊文献+

密集连接卷积网络图像去模糊 被引量:9

Motion deblurring method based on DenseNets
原文传递
导出
摘要 目的 非均匀盲去运动模糊是图像处理和计算机视觉中的基础课题之一.传统去模糊算法有处理模糊种类单一、耗费时间两大缺点,且一直未能有效解决.随着神经网络在图像生成领域的出色表现,本文把去运动模糊视为图像生成的一种特殊问题,提出一种基于神经网络的快速去模糊方法.方法 首先,将图像分类方向表现优异的密集连接卷积网络(dense connected convolutional network,DenseNets)应用到去模糊领域,该网络能充分利用中间层的有用信息.在损失函数方面,采用更符合去模糊目的的感知损失(perceptual loss),保证生成图像和清晰图像在内容上的一致性.采用生成对抗网络(generative adversarial network,GAN),使生成的图像在感官上与清晰图像更加接近.结果 通过测试生成图像相对于清晰图像的峰值信噪比(peak signal to noise ratio,PSNR),结构相似性(structural similarity,SSIM)和复原时间来评价算法性能的优劣.相比DeblurGAN (blind motion deblurring usingconditional adversarial networks),本文算法在GOPRO测试集上的平均PSNR提高了0.91,复原时间缩短了0.32 s,能成功恢复出因运动模糊而丢失的细节信息.在Kohler数据集上的性能也优于当前主流算法,能够处理不同的模糊核,鲁棒性强.结论 本文算法网络结构简单,复原效果好,生成图像的速度也明显快于其他方法.同时,该算法鲁棒性强,适合处理各种因运动模糊而导致的图像退化问题. Objective Non-uniform blind deblurring is a challenging problem in image processing and computer vision communities. Motion blur can be caused by a variety of reasons,such as the motion of multiple objects,camera shake,and scene depth variation. Traditional methods applied various constraints to model the characteristics of blur and utilized different natural image prior to the regularization of the solution space. Most of these methods involve heuristic parameter-tuning and expensive computation. Blur kernels are more complicated than these assumptions. Thus,these methods are not useful for real world images. Impressive results have been obtained in image processing with the development of neural networks.Scholars use neural networks for image generation. In this study,motion deblurring is regarded as a special problem of image generation. We also propose a fast deblurring method based on neural network without using multi-scale,unlike other scholars. Method First,this study adopts the densely connected convolutional network (DenseNets) which recently performed well in image classification direction. Improvements are made for the model to make it suitable for image generation.Our network is a full convolutional network designed to accept various sizes of input images. The input images are trained through two convolutional layers to obtain a total of 256 feature maps with the dimension of 64 × 64 pixels. Then,these feature maps are introduced into the DenseNets containing bottleneck layers and transitions. The output of bottleneck layers in each dense block is 1 024 feature maps,while the output of the last convolution layer of each dense block is 256 feature maps. Finally,the output of the DenseNets is restored to the size of the original image by three convolutional layers. A residual connection is added between the input and output to preserve the color information of the original image as much as possible. We also speed up the time of training. To ensure the efficiency of deblurring,this network uses only ni
作者 吴迪 赵洪田 郑世宝 Wu Di;Zhao Hongtian;Zheng Shibao(School of Electronic information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《中国图象图形学报》 CSCD 北大核心 2020年第5期890-899,共10页 Journal of Image and Graphics
基金 国家自然科学基金项目(61671289) 上海市重点实验室项目(18DZ2270700)。
关键词 运动模糊 盲去模糊 生成对抗网络(GAN) 密集连接卷积网络(DenseNets) 感知损失 全卷积网络(FCN) motion blur blind deblurring generative adversarial network(GAN) densely connected convolution network(DenseNets) perceptual loss fully convolution network(FCN)
  • 相关文献

参考文献2

二级参考文献24

  • 1Richattson W H. Bayesian-based iteralive method t)f image resl- ration [ J ]. Journal of the Optical Society of America, 1972, 62 ( 1 ) : 55-59. [ DOI : 10. 1364/JOSA. 62. 000055 ]. 被引量:1
  • 2Liu R, Jia J. Reducing boundary artifacls in image deconvolution[ C ]//Proceedings of the 15th International Conference on Image Processing. New York, USA : IEEE, 2008 : 505-508. [ DOI : 10. 1109/ICIP. 2008. 4711802. 被引量:1
  • 3Levin A, Weiss Y, Durand F. Understanding and evaluatinO blind deconvolution algorithms [ C ]//Proceedings of the 22nd] Computer Vision and Pattern Recognition. New York, USA:] IEEE, 2009: 1964-1971. [DOI: 10. ll09/CVPR. 2009.] 5206815 ] /. 被引量:1
  • 4Shan Q, Jia J, Agarwala A. High-quality motion deblurring from a single image [ J ]. ACM Transactions on Graphics, 2008, 27(3) : 73(1-10). [DOI: 10. 1145/1360612. 1360672]. 被引量:1
  • 5Jia J. Single image motion deblurring using transparency [ C ] // Proceedings of the 20th Computer Vision and Pattern Recogni- tion. New York, USA: IEEE, 2007: 1-8. [ DOI: 10. 1109/ CVPR. 2007. 383029 ]. 被引量:1
  • 6Cho S, Lee S. Fast motion deblurring [J]. ACM Transactions on Graphics, 2009, 28 (5): 145 (1-4) . [DOI: 10.1145/ 1618452. 1618491. 被引量:1
  • 7Chen J, Xie Z F, Sheng B, et al. Motion deblurring from a sin- gle image using gradient enhancement [ C ]//Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry. New York, USA: ACM, 2011: 293-300. [ DOI: 10. 1145/2087756. 20878001. 被引量:1
  • 8Xu L, Jia J. Two-phase kernel estimation for robust motion deblurring[ C]//Proceedings of European Conference on Com- puter Vision 2010. Berlin, Germany: Springer, 2010 : 157-170. [ DOI: 10. 1007/978-3-642-15549-9_12]. 被引量:1
  • 9Fergus R, Singh B, Hertzmann A, et al. Removing camera shake from a single photograph [ J ]. ACM Transactions on Graphics, 2006, 25 ( 3 ) : 787-794. [DOI: 10. 1145/ 1141911. 1141956]. 被引量:1
  • 10Zhuo S, Guo D, Sim T. Robust flash deblurring [ C ]//Procee- dings of the 23rd Computer Vision and Pattern Recognition. New York, USA: IEEE, 2010: 2440-2447. [DOI: 10.1109/ CVPR. 2010. 5539941 ]. 被引量:1

共引文献9

同被引文献29

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部