期刊文献+

Investigation of hot jet on active control of oblique detonation waves 被引量:7

原文传递
导出
摘要 The hot jet injection is utilized to actively control the oblique detonation wave,such as initiating and stabilizing an oblique detonation wave at a desired position that is shorter than the length of induction zone,and adjust the height of the oblique detonation wave at the exit of combustor when the oblique detonation wave engine is working on off-design flight conditions.The fifth order Weighted Essentially Non-Oscillatory(WENO)scheme and a two-step reversible reaction mechanism of the stoichiometric H_2/Air are adopted in the simulations.With the help of hot jet injection,the transition from inert oblique shock wave to the oblique detonation wave immediately occurs near the position of hot jet injection,and consequently the length of combustor can be reduced.The angle of oblique detonation wave also decreases as the hot jet injection approaches the nose of wedge.Additionally,the height of the oblique detonation wave at the exit of combustor can be flexibly adjusted,and also depends on the injection position and the strength of the hot jet.If the velocity of the hot jet is too weak to directly trigger the overall oblique detonation wave at the position of injection,increasing the injection pressure will improve the strength of the hot jet and results in a successful transition.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期861-869,共9页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11572258,91441201) NSAF(No.U1730134) Science Challenge Project(No.TZ2016001) National Key Laboratory for Shock Wave and Detonation Physics Research Foundation(No.6142A0304020617) the Fundamental Research Funds for the Central Universities(No.3102017Ax006) the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)(No.KFJJ1913M)。
  • 相关文献

参考文献1

二级参考文献24

  • 1Yang Y N, Yang B, Zhu J R, Shen Z H, Lu J and Ni X W 2008 Chin. Phys. B 17 1318. 被引量:1
  • 2Ma F, Choi J Y and Yang V 2005 AIAA 2005 227. 被引量:1
  • 3Ma F, Choi J Y and Yang V 2005 J. Propul. Power 21 512. 被引量:1
  • 4Shao Y T and Wang J P 2010 Chin. Phys. Lett. 27 034705. 被引量:1
  • 5Liu S J, Lin Z Y, Sun M B and Liu W D 2011 Chin. Phys. Lett. 28 094704. 被引量:1
  • 6Alexandrov V G, Vedeshkin G K, Kraiko A N, Ogorod- nikov D A, Reent K S, Reent K S, Skibin V A and Chernyj G G 1999 Patent of Russian Federation 2157909 [1999]. 被引量:1
  • 7Jiro K, Toshi F, Takuma E and Takakage A 2001 AIAA J. 39 1553. 被引量:1
  • 8Jiro K, Takakage A, Akiko M, Nobutaka A and Kouki T 2001 AIAA 2001 1800. 被引量:1
  • 9Yu D, Akiko M and Jiro K 2007 AIAA 2007 1171. 被引量:1
  • 10Higgins A J and Bruckner A P 1996 AIAA 1996 0342. 被引量:1

共引文献3

同被引文献43

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部