期刊文献+

基于优化上界的高平均效用项集垂直挖掘算法 被引量:1

A vertical mining algorithm for high average-utility itemsets based on optimal upper bound
下载PDF
导出
摘要 高平均效用项集挖掘是当前研究的热点之一。针对高平均效用项集挖掘算法产生大量无意义的候选项集,而导致高内存消耗和运行时间长的问题,提出了dMHAUI算法。首先定义了集成矩阵Q,并提出了4种基于垂直数据库表示的紧凑平均效用上界及3种有效的修剪策略;将高平均效用项集挖掘所需的信息存储于IDUL结构树,利用改进的diffset技术快速计算项集的平均效用和上界;最后通过递归调用搜索函数得到高平均效用项集。与EHAUPM算法和MHAI算法进行仿真比较,结果表明,dMHAUI算法在运行时间、连接比较次数和可扩展性等方面都有较优的性能。 Mining high average-utility itemsets is one of the hotspots in the current research.Aiming at the problem that the high average-utility itemsets mining algorithm generates a large number of meaningless candidate itemsets,which results in high memory consumption and long running time,the dMHAUI algorithm is proposed.Firstly,the algorithm defines the integration matrix Q,and proposes four compact average-utility upper bounds based on vertical database representation and three effective pru-ning strategies.Secondly,the information needed for high average-utility itemsets mining is stored in the IDUL structure tree,and the improved diffset technique is used to quickly calculate the average-utility and upper bound of itemsets.Finally,the high average-utility itemsets are obtained by recursively calling the search algorithm.Simulation results show that the dMHAUI function has better performance than the EHAUPM algorithm and the MHAI algorithm in terms of running time,join operation number and scalability.
作者 浦蓉 邵剑飞 胡常礼 曲坤 PU Rong;SHAO Jian-fei;HU Chang-li;QU Kun(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第5期931-937,共7页 Computer Engineering & Science
关键词 模式挖掘 高平均效用项集挖掘 dMHAUI算法 上界 效用挖掘 pattern mining high average-utility itemsets mining dMHAUI algorithm upper bound utility mining
  • 相关文献

参考文献6

二级参考文献24

  • 1刘旭,毛国君,孙岳,刘椿年.数据流中频繁闭项集的近似挖掘算法[J].电子学报,2007,35(5):900-905. 被引量:14
  • 2王永恒,杨树强,贾焰.海量文本数据库中的高效并行频繁项集挖掘方法[J].计算机工程与科学,2007,29(9):110-113. 被引量:2
  • 3Vo B, Hong T P, Le B. DBV-miner:a dynamic bit-vector approach for fast mining frequent closed itemsets[J] . Expert Systems with Applications, 2012, 39(8):7196-7206. 被引量:1
  • 4Tan Jun. Weighted association rules mining algorithm research[J] . Applied Mechanics and Materials, 2013, 24(1):1598-1601. 被引量:1
  • 5Vo B, Hong T P, Le B. Dynamic bit vectors:an efficient approach for mining frequent itemsets[J] . Scientific Research and Essays, 2011, 6(25):5358-5368. 被引量:1
  • 6Le B, Nguyen H, Vo B. An efficient strategy for mining high utility itemsets[J] . International Journal of Intelligent Information and Database Systems, 2011, 5(2):164-176. 被引量:1
  • 7Abdullah Z, Herawan T, Ahmad N, et al. Mining significant association rules from educational data using critical relative support approach[J] . Procedia-Social and Behavioral Sciences, 2011, 28(7):97-101. 被引量:1
  • 8Szathmary L, Valtchev P, Napoli A, et al. A fast compound algorithm for mining generators, closed itemsets, and computing links between equivalence classes[J] . Annals of Mathematics and Artificial Intelligence, 2014, 70(1-2):81-105. 被引量:1
  • 9Larose D T. Discovering knowledge in data:an introduction to data mining[M] . [S. l.] :Wiley, 2014. 被引量:1
  • 10Galárraga L A, Teflioudi C, Hose K, et al. Amie:association rule mining under incomplete evidence in ontological knowledge bases[C] //Proc of the 22nd International Conference on World Wide Web. 2013:413-422. 被引量:1

共引文献18

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部