期刊文献+

空气导热系数和孔隙形状对多孔绝热材料相对导热系数的影响 被引量:4

Effects of Air Thermal Conductivity and Pore Shape on Relative Thermal Conductivity of Porous Insulation Materials
原文传递
导出
摘要 采用有限体积法,对空气导热系数可变的多孔绝热材料进行三维数值实验分析。构建细胞模型,推导热传导方程及边界条件,进而结合多孔绝热材料特点,得到共轭热传导方程。对共轭热传导方程进行求解,以相对导热系数为衡量标准,探讨在不同空气导热系数下,在三角形、椭圆形、菱形、T形和I形五种孔隙形状下,多孔绝热材料的绝热性能。研究发现:1)多孔绝热材料相对导热系数随着空气导热系数的增大而增大;2)在垂直于有效接触面积较大的热通量方向上,I形孔隙和T形孔隙是降低多孔绝热材料相对导热系数的最佳形状。 The Finite Volume Method(FVM)is used to analyze the porous insulation materials with variable air thermal conductivities.The cell model is established,the heat conduction equation and boundary conditions are derived,and then the conjugate heat conduction equation is obtained.By solving the conjugate heat conduction equation and taking the relative thermal conductivity as the standard,the thermal insulation performances of porous insulation materials with different air thermal conductivity as well as 5 pore shapes,namely,triangle,ellipse,diamond,T-shape and I-shape are discussed.The studies show that:1)the relative thermal conductivity of porous insulation materials increases with the increase of air thermal conductivity;2)perpendicular to the direction of heat flux with larger effective contact area,the I-shaped and T-shaped pores are the best pore shapes to reduce the relative thermal conductivity of porous insulation materials.
作者 邱潇薇 汪晓雪 王小见 QIU Xiao-wei;WANG Xiao-xue;WANG Xiao-jian(Lanzhou Jiaotong University,Lanzhou 730070,China)
机构地区 兰州交通大学
出处 《工业技术创新》 2020年第2期93-96,共4页 Industrial Technology Innovation
关键词 多孔绝热材料 孔隙形状 空气导热系数 相对导热系数 共轭热传导方程 细胞模型 有限体积法 Porous Insulation Material Pore Shape Air Thermal Conductivity Relative Thermal Conductivity Conjugate Heat Conduction Equation Cell Model Finite Volume Method
  • 相关文献

参考文献4

二级参考文献24

  • 1周计明,齐乐华,陈国定.New inverse method for identification of constitutive parameters[J].中国有色金属学会会刊:英文版,2006,16(1):148-152. 被引量:4
  • 2郭志鹏,熊守美,曺尚铉,崔正吉.热传导反算模型的建立及其在求解界面热流过程中的应用[J].金属学报,2007,43(6):607-611. 被引量:33
  • 3Hastings L J,Plachta D W,Salerno L, et al. An overview of NASA efforts on zero boil-off storage of cogenic propellants[ Jl. Cryogenics, 2002,41:833-839. 被引量:1
  • 4Hastings L J, Hedayat A, Brown T M. Analytical Modeling and Test Correlation of Variable Density Muhilayer Insulation for Cryo- genic Storage[ RI. NASA/TM-2004-213175, 2004. 被引量:1
  • 5Johnson W L. Thermal Performance of Cryogenic Muhilayer Insulation at Various Layer Spacing [ D ]. Florida: B. A.E. Auburn U- niversity, 2007. 被引量:1
  • 6Hastings L J,Tucker S P, Flachbart R H, et al. Marshall Space Flight Center In-Space Cryogenic Fluid Management Program O- verview[ C]. tilth AIAA/ASME/SAE/ASEE Joint propulsion conference & Exhibit. Arizona: 2005. 被引量:1
  • 7Martin J J, Hastings L. Hastings. Large-Scale Liquid Hydrogen Testing of Variable Density Multilayer Insulation with a Foam Sub- strate[ R]. NASA/TM-2001-211089, 2001. 被引量:1
  • 8Hedayat A,Brown T M,Hastings L J,et al. Variable density multilayer insulation for cryogenic storage [ C ]. 36th AIAA/ASME/ SAE/ASEE Joint propulsion conference & Exhibit. Huntsville: 2000. 被引量:1
  • 9Plachta D W, Christie R J,Jurns J M, et al. Passive ZBO storage of liquid hydrogen and liquid oxygen applied to space science mis- sion concepts[ J]. Cryogenics, 2006,46:89-97. 被引量:1
  • 10Lebar J F,Cady E C. The Advanced Cryogenic Evolved Stage(ACES)-A Low-Cost, Low-Risk Approach to Space Exploration Launch [ C ]. Space 2006. California: 2006. 被引量:1

共引文献27

同被引文献34

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部