期刊文献+

一类带强阻尼Kirchhoff型吊桥方程的长时间动力学行为

Long-time dynamic behavior of a Kirchhoff type suspension bridge equation with strong damping
下载PDF
导出
摘要 运用算子半群分解的方法,研究了一类带强阻尼kirchhoff型吊桥方程的长时间动力学行为.首先,在适当的假设条件下,得到方程的解半群;其次,验证了解半群在两个空间中的渐近紧性;最后,分别通过算子分解方法,得到此类带强阻尼kirchhoff型吊桥方程的整体吸引子和指数吸引子的存在性. The long-time dynamic behavior of a Kirchhoff type suspension bridge equation with strong damping is studied by using the method of operator semigroup decomposition.Under appropriate assumptions,the solution semigroup of the equation is obtained,then asymptotic compactness of the solution semigroup in two spaces is verified,and the existence of global attractor and exponential attractor for the Kirchhoff type suspension bridge equation with strong damping is obtained by operator decom-position method.
作者 吕鹏辉 腾旭 吕小俊 LV Peng-hui;TENG Xu;LV Xiao-jun(Department of Information,School of Tourism and Culture,Yunnan University,Lijiang 674199,China)
出处 《西南民族大学学报(自然科学版)》 CAS 2020年第2期185-194,共10页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家自然科学基金(11161025) 云南省教育厅科学研究项目(2019J0245,2020J0908) 云南大学旅游文化学院重点项目(2015XYZ03)。
关键词 Kirchhoff型 吊桥方程 整体吸引子 指数吸引子 Kirchhoff type suspension bridge equation global attractor exponential attractor
  • 相关文献

参考文献6

二级参考文献21

  • 1LAZER A C, MCKENNA P J. Large-amplitude periodic oscillations in suspension bridge: some new connections with nonlinear analysis[J]. SIAM Rev, 1990, 32(4): 537-578. 被引量:1
  • 2AHMED N U, HARBI H. Mathematical analysis of dynamic models of suspension bridges[J]. SIAM J ApplMath, 1998, 58(3): 853-874. 被引量:1
  • 3WANG Xuan, MA Qiao-zhen. Strong uniform attractors for nonautonomous suspension bridge-type equations [J]. Mathematical Problems in Engineering, 2012, 2012: Article ID 714696, 19 pages. 被引量:1
  • 4ZHONG Chen-kui, MA Qiao-zhen, SUN Chun-you. Existence of strong solutions attractors for the suspension bridge equations[J]. Nonl Anal, 2007, 67: 442-454. 被引量:1
  • 5MA Qiao-zhen, ZHONG Chen-kui, Existence of strong solutions and attractors for the coupled suspension bridge equations [J]. J Di f f Equas , 2009, 246: 3755-3775. 被引量:1
  • 6MA Qiao-zhen, WANG Su-ping, CHEN Xiao-bao. Uniform compact attractors for the coupled suspension bridges equations [J]. Mathematics and Computation, 2011, 217(16) : 6604-6615. 被引量:1
  • 7PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations [M]. Berlin: Springer, 1983. 被引量:1
  • 8Lazer A C, McKenna P J. Large-amplitude periodic oscillations in suspension brideg: Some new connections with nonlinear analysis[J]. SIAM Rev, 1990, 32(4): 537-578. 被引量:1
  • 9Humphreys L D. Numerical mountain pass solutions of a suspension bridge equation[J]. Nonliear Analysis (TMA), 1997, 28(11): 1811-1826. 被引量:1
  • 10McKenna P J, Walter W. Nonliear oscillation in a suspension bridge[J]. Nonliear Analysis, 2000(39): 731-743. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部