期刊文献+

基于近红外光谱分析技术的水蜜桃产地溯源 被引量:7

Traceability of honey peach origin using near infrared spectroscopy analysis techniques
下载PDF
导出
摘要 利用近红外光谱分析技术对来自3个省份的水蜜桃进行研究,比较主成分分析-线性判别分析(PCA-LDA)、判别偏最小二乘法(DPLS)、支持向量机(SVM)等方法对光谱数据识别的有效性差异。结果表明,SVM的准确率和召回率均高达94.47%,明显优于PCA-LDA和DPLS,更适用于水蜜桃产地溯源。 In this study,honey peaches from three provinces were analyzed by near infrared spectroscopy analysis technique,and the effectiveness of principal component analysis-linear discriminant analysis(PCA-LDA),discriminant partial least squares(DPLS)and support vector machine(SVM)for spectral data recognition was compared.The results showed that the precision and recall rate of SVM were 94.47%.The SVM method was obviously better than PCA-LDA and DPLS,and it was more suitable for traceability of honey peach origin.
作者 孙晓明 陈小龙 余向阳 卞立平 孙爱东 SUN Xiao-ming;CHEN Xiao-long;YU Xiang-yang;BIAN Li-ping;SUN Ai-dong(Institute of Food Safety and Nutrition,Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology,Nanjing 210014,China)
出处 《江苏农业学报》 CSCD 北大核心 2020年第2期507-512,共6页 Jiangsu Journal of Agricultural Sciences
基金 国家重点研发计划项目(2017YFC1601000) 江苏省农业科技自主创新基金项目[CX(18)3054] 国家现代农业产业技术体系桃体系项目(CARS-30-5-03).
关键词 水蜜桃 产地溯源 近红外光谱 主成分分析-线性判别分析 判别偏最小二乘 支持向量机 honey peach geographical origin traceability near infrared spectroscopy principal component analysis-linear discriminant analysis discriminant partial least squares support vector machine
  • 相关文献

参考文献20

二级参考文献261

共引文献220

同被引文献164

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部