摘要
目的研究某一匝道公路曲线连续箱梁桥的空间车桥耦合振动响应问题,分析曲率半径对该类桥型车桥耦合振动的影响,为设计提供参考.方法考虑桥梁阻尼比和桥面平整度的影响,采用通用软件ANSYS模拟桥梁,车辆简化为16自由度模型,再用模态综合法编制了求解公路曲线梁桥车桥耦合方程的MATLAB程序并进行动载试验验证.结果主梁跨中最大位移响应会随着曲率半径的减小而逐渐增大,且当曲率半径R≤120 m时,最大位移响应迅速增大;当曲率半径大于120 m时曲线梁桥的位移冲击系数均小于直线梁桥.结论随着曲率半径的减小,弯矩、扭矩最大冲击系数逐渐增大,而剪力最大冲击系数变化较小;在曲率半径由120 m减小至60 m的过程中,内力相应的最大冲击系数均迅速增加.
The purpose of this paper is to studies the coupling vibration response of a curved continuous box girder bridge on a ramp road and analyzes the influence of curvature radius on the coupling vibration of the bridge,which provides reference for the design.The general software ANSYS was used to simulate the bridge and the vehicle was simplified to a 16-degree-of-freedom model.A MATLAB program for solving the vehicle-bridge coupling equation of curved girder bridge were developed by using modal synthesis method and verified by dynamic load test considering the influence of bridge damping ratio and bridge deck irregularity.The results showed that the maximum displacement response increases with the decrease of curvature radius,and the maximum displacement response increases rapidly when curvature radius is less than 120 m.When the curvature radius is greater than 120 m,the displacement impact coefficient of curved girder bridge is smaller than that of straight girder bridge.With the decrease of curvature radius,the maximum impact coefficients of bending moment and torsion increase gradually,while the maximum impact coefficients of shear force change slightly.The corresponding maximum impact coefficients of internal force increase rapidly in the process of reducing the curvature radius from 120 m to 60 m.
作者
陈水生
罗浩
桂水荣
CHEN Shuisheng;LUO Hao;GUI Shuirong(School of Civil Engineering and Architecture,East China Jiaotong University,Nanchang,China,330013)
出处
《沈阳建筑大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第2期290-298,共9页
Journal of Shenyang Jianzhu University:Natural Science
基金
国家自然科学基金项目(51468018)
江西省自然科学基金项目(20181BAB206043,20181BAB206041)。
关键词
连续曲线梁桥
车桥耦合振动
冲击系数
位移与内力
Runge-Kuntta算法
continuous curved girder bridge
vehicle-bridge coupling vibration
impact coefficient
displacement and internal force
Runge-Kuntta algorithm