期刊文献+

基于EEMD能量比和GG聚类的滚动轴承故障诊断 被引量:5

Fault Diagnosis of Rolling Bearing Based on EEMD Energy Ratio and GG Clustering
下载PDF
导出
摘要 针对滚动轴承故障特征提取困难导致故障类型难以辨识的问题,提出基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和GG(Gath-Geva,GG)聚类的轴承故障诊断方法。首先,使用EEMD分解方法对轴承的振动信号进行分解,结合相关系数原则提取含有主要故障信息的4个固有模态函数(IMF)分量,计算其能量百分比作为特征值,再用GG聚类对特征值进行聚类分析。通过仿真验证了GG聚类的优越性,然后采用文中提出的GG聚类方法与FCM聚类、GK聚类对轴承故障数据的聚类效果进行对比分析,验证了文中所提方法在滚动轴承故障识别中的可行性。 Aiming at the difficulty in extracting fault features of rolling bearings leads to the difficulty in identifying fault types,an approach based on Ensemble Empirical Mode Decomposition(EEMD)and GG(Gath-Geva,GG)clustering is proposed.Firstly,the vibration signal of the bearing was decomposed by the EEMD decomposition method and four intrinsic mode functions(IMF)components containing major fault information were extracted by combining the correlation coefficient principle,and their energy percentage was calculated as the characteristic value,and then the characteristic value was analyzed by GG clustering.The superiority of GG clustering was verified by simulation,and then compared and analyzed the clustering effect of bearing fault data with the GG clustering method proposed in this paper,FCM clustering and GK clustering,and verified the feasibility of the proposed method in fault identification of rolling bearing.
作者 马丽华 朱春梅 赵西伟 MA Li-hua;ZHU Chun-mei;ZHAO Xi-wei(Key Laboratory of Modern Measurement and Control Technology,Beijing Information Science and Technology University , Beijing 100192,China)
出处 《组合机床与自动化加工技术》 北大核心 2020年第5期21-26,共6页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金资助项目(51275052) 北京市自然科学基金重点项目资助(3131002) 京津冀自然科学基金基础研究合作项目(J170004)。
关键词 GG聚类 能量比 滚动轴承 GG clustering energy ratio rolling bearing
  • 相关文献

参考文献5

二级参考文献41

  • 1周涛涛,刘彦,彭伟才,朱显明.基于EEMD和SVM的滚动轴承故障诊断[J].声学技术,2014,33(S01):107-110. 被引量:6
  • 2Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non- linear and non-stationary time series analysis[J]. Pro-ceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971) : 903--995. 被引量:1
  • 3Wu Z, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society of Lon- don. Series A= Mathematical, Physical and Engineer- ing Sciences, 2004, 460(2046) : 1 597--1 611. 被引量:1
  • 4Serra J. Image Analysis and Mathematical Morphology Vol. 1 [M]. New York: Academic Press, 1982. 被引量:1
  • 5Serra J. Image Analysis and Mathematical Morphology Vol. 2: Theoretical Advances[M]. New York= Aca- demic Press, 1988. 被引量:1
  • 6Maragos P. Pattern spectrum of images and morpho- logical shape-size complexity [A]. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP'87. IEEE[C]. Dallas, USA, 1987, 12: 241--244. 被引量:1
  • 7Maragos P. Pattern spectrum and multiscale shape representation [J]. Pattern Analysis and Machine In- telligence, IEEE Transactions on, 1989, 11 (7): 701--716. 被引量:1
  • 8Torre E, Picado-Muino D, Denker M, et al. Statisti- cal evaluation of synchronous spike patterns extracted by {requent item set mining [J]. Frontiers in Compu-tational Neuroscience, 2013, 7(4):4 306--4 318. 被引量:1
  • 9Bartovsky J, Doklddal P, Dokladalova E, et al. One- scan algorithm for arbitrarily oriented 1-D morphologi cal opening and slope pattern spectrum [A]. Image Processing (ICIP), 2012 19th IEEE International Con- terence on. IEEE[C]. Orlando, USA, 2012: 133-- 136. 被引量:1
  • 10Dron J P, Bolaers F. Improvement of the sensitivity of the scalar indicators (crest factor, kurtosis) using a de-noising method by spectral subtraction: application to the detection of defects in ball bearings [J]. Journal of Sound and Vibration, 2004, 270(1): 61--73. 被引量:1

共引文献65

同被引文献34

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部