期刊文献+

一种基于加权Jaccard距离的决策树集成选择方法 被引量:1

A Method for Decision Tree Ensemble Selection Based on Weighted Jaccard Distance
下载PDF
导出
摘要 在决策树集成中,准确性和多样性都很重要,精确且多样化的决策树构成的集成系统能够提高对未知样本的分类精度.提出了一种加权Jaccard距离WJD来度量决策树的多样性,对WJD的性质进行了分析,并用基于WJD的层次聚类算法来选择集成.在UCI数据集上的对比实验表明,WJD是一种有效的多样性度量方法,基于WJD的决策树集成选择能够达到较高的预测精度. Both accuracy and diversity are important in an ensemble of decision trees.An ensemble composed of accurate and diverse decision trees can improve the accuracy of classification for unseen samples.A new method,the Weighted Jaccard Distance(WJD),is presented to measure the diversity of decision trees,the property analysis being performed for WJD.Then we employ WJD-based hierarchical clustering to select decision trees for an ensemble.The experimental results performed on UCI datasets demonstrate that WJD is an effective diversity measure and the selected sub-ensemble based on WJD can obtain better classification accuracy.
作者 于凯 王立宏 YU Kai;WANG Li-hong(School of Computer and Control Engineering,Yantai University,Yantai 264005,China)
出处 《烟台大学学报(自然科学与工程版)》 CAS 2020年第2期204-211,共8页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(61773331,71672166),山东省高等学校科技计划资助项目(J17KA091).
关键词 数据挖掘 决策树 多样性度量 集成 加权Jaccard距离 data mining decision tree diversity measure ensemble weighted Jaccard distance
  • 相关文献

参考文献3

二级参考文献80

  • 1王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 2Thompson S. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems, 1999, 12(5-6): 277-284. 被引量:1
  • 3Zhou Z H, Tang W. Selective ensemble of decision trees// Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Chongqing, China, 2003:476-483. 被引量:1
  • 4Hernandez-Lobato D, Hernandez-Lobato J M, Ruiz-Torrubiano R, Valle A. Pruning adaptive boosting ensembles by means of a genetic algorithm//Corchado et al. International Conference on Intelligent Data Engineering and Automated Learning. Berlin Heidelberg: Springer-Verlag, 2006: 322- 329. 被引量:1
  • 5Zhang Y, Burer S, Street W N. Ensemble pruning via semidefinite programming. Journal of Machine Learning Research, 2006, 7: 1315-1338. 被引量:1
  • 6Chen H H, Tino P, Yao X. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(7): 999-1013. 被引量:1
  • 7Dos Santos E M, Sahourin R, Maupin P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 2009, 10(2): 150-162. 被引量:1
  • 8Li N, Zhou Z H. Selective ensemble under regularization framework//Benediksson J A, Kittler J, Roll F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:293-303. 被引量:1
  • 9Reid S, Grudic G. Regularized linear models in stacked generalization//Benediksson J A, Kittler J, Roli F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:112-121. 被引量:1
  • 10Zhang L, Zhou W D. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition, 2011, 44(1): 97-106. 被引量:1

共引文献158

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部