期刊文献+

基于深度学习的高压杆塔异物检测 被引量:3

Foreign Object Detection in High-Voltage Towers Based on Deep Learning
下载PDF
导出
摘要 针对高压杆塔的安全性易受鸟巢等异物影响的情况,提出基于经典深度学习理论的Fast R-CNN算法,实现对异物的快速检测,降低安全风险。该算法的基本思路是,通过Selective Search法提取杆塔图像候选区域,并基于CaffeNet网络模型优化参数,经过多次迭代和样本训练,最后智能检测出杆塔图像中的鸟巢并定位目标区域。 In order to reduce the damage caused by the bird's nest to the safety of high-voltage transmission lines,a Fast R-CNN algorithm is proposed based on the classic deep learning,which can realize fast and efficient foreign object detection.The selective search method algorithm is used to extract the candidate area of the tower image,and the parameters are optimized based on the CaffeNet network model.Finally,the bird's nest foreign matters in the tower image are intelligently detected,and the target area with significant results is located after different iterations and training samples adjustment.
作者 师飘 张超 郑祥明 SHI Piao;ZHANG Chao;ZHENG Xiangming(Department of Electronics and Information Engineering,Bozhou University,Bozhou Anhui 236800,China)
出处 《重庆科技学院学报(自然科学版)》 CAS 2020年第2期83-87,共5页 Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金 安徽省高校优秀青年人才支持计划项目(GXYQ2017109) 安徽省高校自然科学研究项目“基于敏捷开发的高校实习实训APP建设”(KJ2017A703) 亳州学院“嵌入式系统开发与应用”创客实验室项目(2017CKSY02)。
关键词 深度学习 FAST R-CNN模型 高压杆塔 鸟巢 目标检测 deep learning Fast R-CNN model high-voltage tower bird′s nest target detection
  • 相关文献

参考文献5

二级参考文献14

  • 1Stepanyan, Vahram. Vision based guidance and flight control in problems of aerial tracking[D]. Virginia Polyeechnic Institute and State University, 2006. 被引量:1
  • 2Sivakumar, Rathinam, Zuwhankim, et al. Vision-based following of structures using an unmanned aerial vehicle [ R ]. Research Re- ports UCB-ITS-RR,2006. 被引量:1
  • 3Hubbard D, Morse B. Performance evaluation of vision-based nav- igation and landing on a rotorcraft unmanned aerial vehicle [ C ]. WACV,2007. 被引量:1
  • 4Comali, Tegan G. Calculating attitude from horizon vision [ C ]. Eleventh Australian International Aerospace Congress, Melbourne, 2005. 被引量:1
  • 5Mcgeetg, Sengupta R, Hedrick K. Obstacle detection for small au- tonomous aircraft using sky segmentation[ C ]. IEEE International Conference on Robotics and Automation, 2005. 被引量:1
  • 6Kartik B, Ariyur, Kingsley O Fregene. Autonomous tracking of a ground vehicle by a UAV[ C]. ACC. Seattle, Washington, 2008 : 669 -671. 被引量:1
  • 7Frangi A F, Niessen W J, Vincken K L, et al. Multiscale vessel enhancement filtering[ A ]. In Medical Image Computingand Com- puter-Assisted Intervention-MICCAI' 98 [ C ]. Lecture Notes in Computer Science, 1998, 1496: 130-137. 被引量:1
  • 8李小毛,王智峰,唐延东.基于形状保持主动轮廓模型长直条的检测[J].计算机工程,2008,34(1):53-55. 被引量:5
  • 9范保杰,朱琳琳,崔书平,李向军,唐延东.旋翼无人机视觉跟踪系统[J].红外与激光工程,2011,40(1):149-152. 被引量:15
  • 10张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2268

共引文献37

同被引文献23

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部