摘要
为弥补道路建设规划编制中的定量支撑体系不健全的问题,结合大数据大样本、长周期、高密度、宏微观精准分析能力的特点,提出了基于多源大数据的路网运行诊断技术,长周期数据支撑下的道路近期发展趋势预测,高密度数据渗流理论的关键路段甄别方法.以广州市道路交通建设规划为例,验证了大数据技术在建设规划中的适用性,促进了大数据技术在交通领域的应用.
Based on massive volume,long period,high frequency,macro and micro precise of multi-resource big data,a series of application methods and techniques are proposed to improve the quantitative support system of transportation planning,such as,the road network operation diagnosis technique,road transportation development prediction and high-density data seepage theory applied in key road sections’identification.Taking the road transportation planning in Guangzhou as an example,the this paper has verified the application technology of big data in transportation planning.
作者
龙绍海
宋程
艾冠韬
黄晓虹
陈先龙
LONG Shaohai;SONG Cheng;AI Guantao;HUANG Xiaohong;CHEN Xianlong(Guangzhou Road Engineering Research Center,Guangzhou 510030,China;Guangzhou Transport Planning Research Institute,Guangzhou 510030,China;Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 200092,China)
出处
《交通工程》
2020年第2期48-53,共6页
Journal of Transportation Engineering
基金
广东省自然科学基金编号(2017A030310581)项目名:基于手机数据的城市交通空间重构技术研究.广州市科技项目编号:201707010477项目名:交通与土地利用协调发展整体模型框架与仿真系统研究.
关键词
大数据
道路建设规划
手机信令
渗流理论
big data
road construction plan
cell phone signal
percolation theory