期刊文献+

基于机器学习方法的上市公司财务预警模型对比研究 被引量:2

下载PDF
导出
摘要 当前我国上市公司信息披露仍存在着许多不规范的现象,个别上市公司在面临财务危机时,粉饰其财务风险,进行财务造假.本文利用上市超过3年的A股共3002家上市公司的财务数据,通过对ST、*ST和10家2019年退市的公司样本分析,根据不同的时间窗口,构建了财务预警因子库,共96个因子.分别采用机器学习中的逻辑斯蒂回归、支持向量机、决策树模型对因子数据进行训练.将数据集分为训练集和测试集,用训练集训练模型,并将模型应用在测试集中进行预测.结果如下:(1)三种模型均有较好的预测能力,其准确率都在94%以上;(2)决策树模型的预测效果最佳,支持向量机模型次之,逻辑斯蒂回归模型的预测效果最差;(3)三种模型都存在将较多的财务预警公司预测为正常公司的情况.本文通过将三种模型进行对比分析,以寻找更加优质的财务预警模型,来更好地帮助企业识别财务风险.
机构地区 天津科技大学
出处 《商场现代化》 2020年第7期150-152,共3页
  • 相关文献

参考文献10

二级参考文献24

共引文献14

同被引文献9

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部