期刊文献+

混沌驱动-响应系统形状渐近同步控制及其在保密通讯中的应用

Driver-response shape asymptotic synchronization control for chaotic system and its application in confidentiality communication
下载PDF
导出
摘要 文章针对一类二阶混沌系统,基于微分几何基本理论,提出了一种驱动-响应形状渐近同步的概念.为了实现驱动-响应形状渐近同步,文章首先基于Lyapunov稳定性原理和形状同步误差设计了一种形状同步控制器,并证明了在形状同步控制器作用下,驱动系统和响应系统曲线能够达到形状渐近同步.然后利用形状同步的特点,结合混沌掩盖技术,设计了一种基于形状同步的保密通讯方案.最后,通过仿真验证了形状渐近同步控制应用于保密通讯的有效性. In this paper,based on basic theory of differential geometry,a definition of driver-response shape asymptotic synchronization is proposed for a class of two-dimensional chaotic system.First,combining Lyapunov stability theory and shape synchronization error,a shape asymptotic synchronization controller is designed.It can be demonstrated that the shape of driver system and response system are able to achieve shape asymptotic synchronization by proposed controller.Then,by utilizing characteristic of shape synchronization,new confidentiality communication scheme with shape synchronization is developed based on chaotic cover technology.Finally,the simulation is given to verify the effectiveness of shape asymptotic synchronization control and its application in confidentiality communication.
作者 黄运昌 汤晓 王银河 HUANG Yun-chang;TANG Xiao;WANG Yin-he(School of Automation, Guangdong University of Technology, Guangzhou 510006, China;Guangzhou Argion Electric Appliance Co., Ltd, Guangzhou 510006, China)
出处 《广州大学学报(自然科学版)》 CAS 2019年第5期91-95,共5页 Journal of Guangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(61673120)。
关键词 驱动-响应系统 形状同步 保密通讯 driver-response system shape asymptotic synchronization confidentiality communication
  • 相关文献

参考文献6

二级参考文献32

  • 1Lin T C, Lee T Y, Balas V E. Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems. Chaos, Solitons and Fractals, 2011, 44(10): 791-801. 被引量:1
  • 2Chen D Y, Zhang R F, ClintonSprott J, Ma X Y. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dynamics, 2012, 70(2): 1549-1561. 被引量:1
  • 3Wang Z. Synchronization of an uncertain fractional-order chaotic system via backstepping sliding mode control. Discrete Dynamics in Nature and Society, 2013, Article ID 732503, DOI: 10.1155/2013/732503. 被引量:1
  • 4Wang D F, Zhang J Y, Wang X Y. Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller. Chinese Physics B, 2013, 22(4): 04057, DOI: 10.1088/1674-1056/22/4/040507. 被引量:1
  • 5Wu Y P, Wang G D. Synchronization between fractional-order and integer-order hyperchaotic systems via sliding mode controller. Journal of Applied Mathematics, 2013, Article ID 151025, DOI: 10.1155/2013/151025. 被引量:1
  • 6Aghababa M P. Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynamics, 2012, 69(1-2): 247-261. 被引量:1
  • 7Wang Z, Huang X, Lu J W. Sliding mode synchronization of chaotic and hyperchaotic systems with mismatched fractional derivatives. Transactions of the Institute of Measurement and Control, 2013, 35(6): 713-719. 被引量:1
  • 8Hou Y Y, Liao T L, Yan J J. H∞ synchronization of chaotic systems using output feedback control design. Physica A: Statistical Mechanics and its Applications, 2007, 379(1): 81-89. 被引量:1
  • 9Pai M C. Robust synchronization of chaotic systems using adaptive sliding mode output feedback control. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2012, 226(5): 598-605. 被引量:1
  • 10Lan Y H, He L J. Sliding mode and LMI based control for fractional order unified chaotic systems. In: Proceedings of the 31st Chinese Control Conference. Hefei, China: IEEE Computer Society, 2012. 3192-3196. 被引量:1

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部