期刊文献+

基于协同训练的半监督异构自适应软测量建模方法的研究 被引量:7

Research on semi-supervised heterogeneous adaptive co-training soft-sensor model
下载PDF
导出
摘要 软测量技术被广泛应用到工业过程中重要且难以在线测量变量的预测。然而,由于工业过程的复杂性,非线性和高昂的数据获取成本,使得建模所需的输入和输出变量数据比例严重不平衡。因此,本文在已有的co-training模型的基础上,将协同训练算法与前馈神经网络(BP)算法相结合,提出了针对非线性问题的co-training BP模型。然而,由于软测量模型应用过程的时变性和不确定性,以及外部环境等因素的影响,会造成数据突变、延迟和波动性大等情况,导致模型预测性能的衰减。因此,本文提出了一种半监督异构的自适应co-training RPLS-RBP模型。一方面,该模型使用奇偶分组的方法将标记数据进行两部分均分。另一方面,递归PLS(RPLS)与递归BP(RBP)同时用于标记数据的建模和预测。为了验证模型的预测性能,所提出模型在一个污水处理的仿真基准平台(BSM1)和一个实际污水厂(UCI)的数据中得到了验证。结果表明,所提模型具有较好的预测性能。 Soft-sensing technology is widely applied to the prediction of important and difficult to measure variables online in industrial processes.However,due to the complexity of industrial processes,non-linearity and high costs to acquire data,the ratio of input and output variables data required for modeling is seriously unbalanced.Therefore,depending on the existing co-training model,this paper combines the co-training algorithm with the back propagation neural network(BP)algorithm to propose a co-training BP model for nonlinear problems.However,due to the time variability and uncertainty of the application process,as well as the negative influences of external environment,and so on,the data exhibit mutation,delay and high volatility,even the prediction performance of the model deteriorated.Thus,this paper proposed a semi-supervised heterogeneous adaptive cotraining RPLS-RBP model.On the one hand,the model used odd-even grouping to equalize two parts of the labeled data.On the other hand,RPLS and RBP are used simultaneously for modeling and the prediction on labeled data.To demonstrate the prediction performance of the model,the proposed model is verified by a simulation benchmark platform(Benchmark Simulation Model-1)and a real sewage treatment plant(UCI database).The results show that the proposed model achieved better prediction performance.
作者 李东 黄道平 刘乙奇 LI Dong;HUANG Daoping;LIU Yiqi(School of Automation Science&Engineering,South China University of Technology,Guangzhou 510641,Guangdong,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2020年第5期2128-2138,共11页 CIESC Journal
基金 国家自然科学基金项目(61873096,61673181) 广州市科技计划项目(201804010256) 广东省基础与应用基础研究基金项目(2020A1515011057)。
关键词 软测量 半监督 协同训练 递归PLS 递归BP soft-sensor semi-supervised co-training recursive PLS recursive BP
  • 相关文献

参考文献11

二级参考文献116

共引文献209

同被引文献50

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部