期刊文献+

基于特征点法和直接法VSLAM的研究 被引量:12

Research of feature-based and direct methods VSLAM
下载PDF
导出
摘要 基于视觉的同时定位和建图(VSLAM)分为前端和后端,前端包括视觉里程计和回环检测,后端包括后端优化和建图。按照估计相机运动的不同方式,将VSLAM分为特征点法和直接法,首先从这两个方面对前端进行综述,阐述其中的关键技术和最新的研究进展,对比分析不同方法的优缺点;然后详细分析优化后端与滤波器后端的区别,进一步对多个开源代码进行比较研究,分析它们的优劣势和适用场合;再讨论深度学习、语义地图和多机器人在VSLAM领域的研究进展,以及相关技术与VSLAM的结合方式及前景;最后对VSLAM的未来进行展望。 VSLAM is divided into front-end and back-end.The front-end includes visual odometry and loop detection,and the back-end includes back-end optimization and mapping.This paper divided VSLAM into feature-based method and direct method according to different ways of estimating camera motion.Firstly,it summarized the front-end from these two aspects,elaborated the key technologies and the latest research progress,compared and analyzed the different methods.Then,it analyzed the differences between the optimize back-end and the filter back-end in detail,and compared the advantages and disadvantages of several open source codes and their applicable occasions.Further,it introduced the research progress of deep learning,semantic mapping and multi-robots in VSLAM,and discussed the combination of related technologies with VSLAM and its prospects.Finally,it prospected the future of VSLAM.
作者 邹雄 肖长诗 文元桥 元海文 Zou Xiong;Xiao Changshi;Wen Yuanqiao;Yuan Haiwen(School of Navigation,Wuhan University of Technology,Wuhan 430063,China;Hubei Key Laboratory of Inland Shipping Technology,Wuhan 430063,China;National Engineering Research Center for Water Transport Safety,Wuhan 430063,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第5期1281-1291,共11页 Application Research of Computers
基金 国家自然科学基金资助项目(51579204,51679180) 武汉理工大学自主创新研究基金资助项目(2016IVA064,2016-YB-029)。
关键词 VSLAM 视觉里程计 特征点法 直接法 非线性优化 VSLAM VO feature-based method direct method nonlinear optimization
  • 相关文献

参考文献4

二级参考文献93

  • 1Smith R C, Cheeseman P. On the representation and estimationof spatial uncertainty[J]. International Journal of Robotics Research,1986, 5(4):56-68. 被引量:1
  • 2Smith R, Self M, Cheeseman P. Estimating uncertain spatialrelationships in robotics[M] //Autonomous Robot Vehicles. NewYork: Springer, 1990: 167-193. 被引量:1
  • 3Durrant-Whyte H, Bailey T. Simultaneous localization andmapping: Part I[J]. IEEE Robotics & Automation Magazine,2006, 13(2): 99-110. 被引量:1
  • 4Bailey T, Durrant-Whyte H. Simultaneous localization andmapping(SLAM): Part II[J]. IEEE Robotics & AutomationMagazine, 2006, 13(3): 108-117. 被引量:1
  • 5Hartley R, Zisserman A. Multiple view geometry in computervision[M]. Cambridge: Cambridge University Press, 2004. 被引量:1
  • 6Aulinas J, Petillot Y R, Salvi J, et al. The SLAM problem: asurvey[J]. CCIA, 2008, 184(1): 363-371. 被引量:1
  • 7Ros G, Sappa A, Ponsa D, et al. Visual SLAM for driverlesscars: a brief survey[C] //Proceedings of IEEE Workshop onNavigation, Perception, Accurate Positioning and Mapping forIntelligent Vehicles. Los Alamitos: IEEE Computer SocietyPress, 2012: Article No.3. 被引量:1
  • 8Triggs B, Mclauchlan P F, Hartley R I, et al. Bundle adjustment -a modern synthesis[C] //Proceedings of International Workshopon Vision Algorithms: Theory and Practice. Heidelberg: Springer,1999: 298-372. 被引量:1
  • 9Indelman V, Williams S, Kaess M, et al. Information fusion innavigation systems via factor graph based incremental smoothing[J]. Robotics and Autonomous Systems, 2013, 61(8): 721-738. 被引量:1
  • 10Forster C, Carlone L, Dellaert F, et al. IMU preintegration onmanifold for efficient visual-inertial maximum-a-posterioriestimation [C] //Proceedings of Robotics: Science and Systems.Rome: Robotics: Science and Systems, 2015: Article No.6. 被引量:1

共引文献251

同被引文献56

引证文献12

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部