期刊文献+

一种改进的高光谱解混非负矩阵分解初始化方法 被引量:5

Improved Hyperspectral Unmixed Initialization Method Based on Non-Negative Matrix Factorization
原文传递
导出
摘要 提出了一种结合欧氏距离和光谱信息散度的改进的高光谱解混非负矩阵分解(NMF)初始化方法(IISSF)。在初始化基础上,结合标准NMF算法和分块NMF算法进行平行对比实验。结果表明,在合成影像实验中,在信噪比为20dB^50dB范围内,经过IISSF初始化后的分块NMF算法获取的结果要优于其他方法;且其在真实影像实验中获取的端元光谱与真实影像端元光谱之间具有最小的平均光谱角差值,即0.1812;其重构影像与真实影像之间的均方根误差值最小,为0.007。 An improved hyperspectral unmixed initialization method(IISSF)based on non-negative matrix factorization(NMF)combining Euclidean distance and spectral information divergence is proposed.On the basis of initialization,aparallel comparison experiment is performed in combination with the standard NMF algorithm and the block NMF algorithm.The results show that,in the synthetic image experiment,the block NMF algorithm after IISSF initialization is better than other methods in the signal-to-noise ratio range from 20 dB to 50 dB.There is a minimum average spectral angular difference between the end-member spectrum obtained in the real image experiment and the reality image endmember spectra,i.e.,0.1812.The root mean square error between the reconstructed image and the real image is the smallest,i.e.,0.007.
作者 黄鹏飞 孔祥兵 景海涛 Huang Pengfei;Kong Xiangbing;Jing Haitao(School of Surveying and Land Information Engineering,Henan Polytechnic University,Jiaozuo,Henan 454150,China;Yellow River Institute of Hydraulic Research,Zhengzhou,Henan 450000,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第6期211-218,共8页 Laser & Optoelectronics Progress
基金 国家重点研发计划(2017YFC0504501) 国家自然科学基金(61501200,41877079) 河南省水利科技攻关计划项目(GG201942,GG201829)。
关键词 图像处理 高光谱影像 非负矩阵分解 空间特征 光谱特征 imaging processing hyperspectral image non-negative matrix factorization spatial characteristics spectral characteristics
  • 相关文献

参考文献5

二级参考文献25

  • 1TONGQing-xi,ZHANGBing,ZHENGLan-fen(童庆禧,张兵,郑兰芬).HyperspectralRemoteSensing:Principle,TechnologyandApplication(高光谱遥感-原理、技术与应用).Beijing:HigherEducationPressC:lt京:高等教育出版社),2006.40. 被引量:1
  • 2DUPei-jun,TANGHong,FANGTao(杜培军,唐宏,方涛).GeomaticsandInformationScienceofWuhanUniversity(武汉大学学报·信息科学版),2006,(2):112. 被引量:1
  • 3Chang C I, Chakravarty S, Chen H M, et al. Pattern Recognition, 2009, 42(3) :395. 被引量:1
  • 4Keshava N. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1552. 被引量:1
  • 5Kruse F A, Lefkoff A B, Boardman J W, et al. Remote Sensing Environment, 1993, 44(2-3):145. 被引量:1
  • 6Sohn Youngsinn, Rebello N Sanj ay. Photogrammetric Engineering and Remote Sensing, 2002, 68 ( 12 ) : 1271. 被引量:1
  • 7Vander Meer F, Bakker W. Int. J. Remote Sensing, 1997, 18(5): 1197. 被引量:1
  • 8Chang C I. IEEE Transactions on Information Theory, 2000, 46(5): 1927. 被引量:1
  • 9Chang C I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Dordrecht: Kluwer Academic Publishers, 2003. 15. 被引量:1
  • 10Van der Meer F. International Journal of Applied Earth Observation and Geoinforrnation, 2006, 8(1) : 3. 被引量:1

共引文献59

同被引文献63

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部