期刊文献+

中医药大数据应用核心问题探究 被引量:8

Research on the Core Problems of Big Data Application in Chinese Medicine
下载PDF
导出
摘要 中医药大数据应整合中医古籍专著、文献期刊、名老中医的医案专著、医院保存的病历、社区健康档案、可穿戴设备数据及天文、地理等各种中医诊疗相关数据,去除无效重复数据,通过标准化词库转换为统一的标准化信息。中医药大数据无法利用的关键在于中医诊疗的经验性、不确定性以及模糊性难以转化为线性逻辑。应用矩阵分析方法构建yi=f(xi),建立中医数字化模型,yi表示药物组合,xi表示症状组合,f表示函数。利用人工智能构建函数f,证素赋值法构建yi、xi,模糊数学方法赋值证药信息,从而构建适应中医非线性对应的数理模型。在tensorflow系统环境下成功实现症状输入,可产生处方的效果。 The big data of Chinese medicine should integrate the ancient Chinese medicine books,literature journals,medical records books of famous and old Chinese medicine,medical records kept in hospitals,community health files,wearable equipment data,astronomy,geography and other data related to diagnosis and treatment of Chinese medicine,remove invalid and duplicate data,and transform them into unified standardized information through standardized thesaurus.The key point that big data of Chinese medicine can't be used is that the experience,uncertainty and fuzziness of diagnosis and treatment of Chinese medicine can't be transformed into linear logic.Using matrix analysis method to construct yi=f(xi),a digital model of Chinese medicine is established.Yi represents medicine combination,xi represents symptom combination,and f represents function.The function f is constructed by artificial intelligence,yi and xi are constructed by syndrome element assignment method,and the syndrome medicine information is assigned by fuzzy mathematics method,so as to construct a mathematical model adapted to the nonlinear correspondence of Chinese medicine.Under the environment of tensorflow system,symptom input can be realized successfully,which can produce the effect of prescription.
作者 潘玉颖 崔伟锋 范军铭 PAN Yuying;CUI Weifeng;FAN Junming(Henan Academy of Chinese Medicine,Zhengzhou Henan China 450004)
出处 《中医学报》 CAS 2020年第5期928-930,共3页 Acta Chinese Medicine
基金 国家自然科学基金资助项目(81774453) 河南省中医临床学科领军人才项目(2013-10) 国家中医药管理局重点学科建设项目(2008-2013) 河南省公益预研课题项目(1603585)。
关键词 大数据 中医药 数字化模型 标准化 big data Chinese medicine digital model standardization
  • 相关文献

参考文献10

二级参考文献196

共引文献504

同被引文献152

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部