期刊文献+

基于深度序列加权核极限学习的入侵检测算法 被引量:10

Intrusion detection algorithm based on depth sequence weighted kernel extreme learning
下载PDF
导出
摘要 针对海量多源异构且数据分布不平衡的网络入侵检测问题以及传统深度学习算法无法根据实时入侵情况在线更新其输出权重的问题,提出了一种基于深度序列加权核极限学习的入侵检测算法(DBN-WOS-KELM算法)。该算法先使用深度信念网络DBN对历史数据进行学习,完成对原始数据的特征提取和数据降维,再利用加权序列核极限学习机进行监督学习完成入侵识别,结合了深度信念网络提取抽象特征的能力以及核极限学习机的快速学习能力。最后在部分KDD99数据集上进行了仿真实验,实验结果表明DBN-WOS-KELM算法提高了对小样本攻击的识别率,并且能够根据实际情况在线更新输出权重,训练效率更高。 This paper proposed an intrusion detection algorithm based on deep sequence weighting kernel limit learning( DBN-WOS-KELM) to solve the problem of massive multi-source heterogeneous network intrusion detection with unbalanced data distribution and the problem,that the traditional deep learning algorithm could not update its output weight online according to the real-time intrusion situation. The algorithm firstly used the deep belief network DBN to study the historical data,then extracted the features of the original data and reduced the dimension of the data. And then it used the weighted sequence kernel extreme learning machine for supervised learning to complete the intrusion detection. It combined the ability of extracting abstract features from the deep belief network and the fast learning ability of the kernel extreme learning machine. Finally,the simulation experiments on KDD99 dataset show that DBN-WOS-KELM algorithm improves the recognition rate of small sample attacks,and can update the output weights online according to the real-time situation,so that the training efficiency is much higher.
作者 汪洋 伍忠东 朱婧 Wang Yang;Wu Zhongdong;Zhu Jing(School of Electronic&Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第3期829-832,共4页 Application Research of Computers
基金 甘肃省高等学校创新团队项目(2017C-09) 中国铁路总公司科技研究开发计划重大课题(2017X013-A)。
关键词 深度信念网络 序列学习 核极限学习 样本加权 入侵检测 deep belief network sequence learning kernel extreme learning sample weighting intrusion detection
  • 相关文献

参考文献2

  • 1杨昆朋..基于深度学习的入侵检测[D].北京交通大学,2015:
  • 2逯玉婧..基于深度信念网络的入侵检测算法研究[D].河北师范大学,2016:

同被引文献59

引证文献10

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部