摘要
已有的水质预测研究通常是单值预测,并以此为依据分析富营养化状态,具有一定的偶然性和不确定性。结合水质动力学模型,提出了一种基于蒙特卡罗仿真的湖库水质预测及富营养化风险评估方法。在已知水质动力学模型水质指标和模型参数的先验分布基础上,利用蒙特卡罗仿真预测水质指标的演化过程,获得未来时刻水质指标取值的概率分布,实现水质预测。进一步,构造综合营养状态指数,结合水质指标预测结果,计算综合营养状态指数的概率分布和处于不同营养程度的概率,实现富营养化风险评估。仿真结果表明,该方法能够有效实现水质预测和富营养化分析,且考虑更加全面、准确,克服了单值预测结果带来的偶然性。
The existing water quality prediction research is usually in a form of single-valued prediction,and analyzes eutrophication status on this basis,which has a certain degree of haphazard and uncertainty.Combining with the water quality kinetic model,this paper proposed a water quality prediction and eutrophication risk assessment method based on Monte-Carlo simulation.Based on the prior distribution of water quality index and model parameters of water quality kinetic model,it used Monte-Carlo simulation to predict the evolution of water quality index to obtain the probability distribution of water quality indicators in future time and achieved water quality prediction.Further,it constructed an integrated eutrophication status index.Combining with the predicted results of water quality indexes,it calculated the probability distribution of comprehensive nutritional status index and the probability of different nutritional status to assess the eutrophication risk.The simulation results show that the proposed method can effectively predict the water quality and analyze eutrophication status,with more comprehensive consideration and accuracy.Meanwhile,it overcomes the haphazard brought by single-valued prediction result.
作者
王小艺
周宇琴
赵峙尧
王立
许继平
于家斌
Wang Xiaoyi;Zhou Yuqin;Zhao Zhiyao;Wang Li;Xu Jiping;Yu Jiabin(Key Lab of Light Industry of China Internet Industry Big Data,Beijing Technology&Business University,Beijing 100048,China)
出处
《计算机应用研究》
CSCD
北大核心
2020年第3期693-698,共6页
Application Research of Computers
基金
国家社会科学基金资助项目(19BGL184)
国家自然科学青年科学基金资助项目(61903008)
北京优秀人才培养资助青年拔尖团队项目(2018000026833TD01)。
关键词
水质动力学模型
蒙特卡罗仿真
水质预测
富营养化
风险评估
water quality kinetic model
Monte-Carlo simulation
water quality prediction
eutrophication
risk assessment