期刊文献+

基于时空融合加速的Fast RCNN运动车辆检测算法 被引量:4

Detection method for moving vehicle target based on Fast RCNN speeded by spatial-temporal fusion
下载PDF
导出
摘要 为了解决传统运动车辆检测方法准确性不高、实时性不足的问题,提出基于时空融合加速的Fast RCNN运动车辆快速检测算法。不同于传统方法仅考虑运动车辆的单一特性,所提方法综合考虑运动车辆目标的时域运动特性和空域相关特性。首先基于时域运动特性设计自适应动态背景估计方法,实时估计背景图像,之后基于空域特征利用形态学滤波快速提取疑似目标区域,最后在vgg16模型基础上设计Fast RCNN深度学习网络,对疑似目标区域进行精准真假判别,避免了全图冗余判别。仿真证明,相对于传统方法,该算法能够有效提高检测准确性,且时效性较高,可应用于实时性要求较高的场景。 In order to improve real timing and precision of traditional detection methods for moving vehicle,a fast detection method for moving vehicle target based on spatial-temporal fusion and Fast RCNN is proposed in this paper.Unlike many classical methods adopting only a single feature,motion feature in time domain and spatial correlation feature are used in the proposed method.Firstly,novel adaptive dynamic background estimation is designed,and the background image can be calculated in real time.After that,the moving areas are got by morphological filter based on spatial feature,which are regarded as suspected targets.Finally,Fast RCNN deep-learning network based on vgg16 model is constructed.The fast RCNN network is used to effectively reject false targets from suspected targets rather than full image,which avoids the redundant calculations through the full image.The simulation results indicate that the proposed method can improve real timing and precison of vehicle detection in comparison with the traditional approaches.It proves that the proposed method is more useful for those scenes with high real-time requirements.
作者 陈玉敏 李淼 房晓丽 Chen Yumin;Li Miao;Fang Xiaoli(School of Electronic Information,Hunan Institute of Information Technology,Changsha 410000,China;School of Electronic Science,National University of Defense Technology,Changsha 410000,China)
出处 《电子测量技术》 2020年第3期139-145,共7页 Electronic Measurement Technology
基金 航天系统部专用技术预研基金(30503050503) 2018年湖南省教育厅科学研究项目(18C1583) 湖南信息学院2018年度校级科研项目(XXY018YB02)资助。
关键词 运动车辆检测 深度学习 形态学滤波 时空融合 FAST RCNN moving vehicle detection deep learning morphological filter spatial-temporal fusion Fast RCNN
  • 相关文献

参考文献7

二级参考文献34

  • 1陈俊超,张俊豪,刘诗佳,陆小锋.基于背景建模与帧间差分的目标检测改进算法[J].计算机工程,2011,37(S1):171-173. 被引量:23
  • 2Nourani-Vatani N, Borges P V K, Roberts J M, et al. On the use of optical flow for scene change detection and description [J]. Journal of Intelligent &Robotic Systems, 2014, 74+ ( 3 ) : 817-846. 被引量:1
  • 3Chen Z, Ellis T. Self-adaptive Gaussian mixture model for ur- ban traffic monitoring system [C] //IEEE International Con- ference on Computer Vision Workshops, 2011: 1769-1776. 被引量:1
  • 4Mejia-Iigo R, Barilla-P6rez M E, Montes-Venegas H A. Co- lor-based texture image segmentation for vehicle detection [C] //6th International Conference on Electrical Engineering, Computing Science and Automatic Control. IEEE, 2009: 1-6. 被引量:1
  • 5Lin B F, Chan Y M, Fu L C, et al. Integrating appearance and edge features for sedan vehicle detection in the blind-spot area [J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (2): 737-747. 被引量:1
  • 6Lian J, Zhao C, Zhang B, et al. Vehicle detection based on information fusion of vehicle symmetrical contour and license plate position [J]. Journal of Southeast University, 2012, 28 (2): 240-244. 被引量:1
  • 7Adankon M M, Cheriet M. Support vector machine [M]. Encyclopedia of Biometrics. Springer US, 2009: 1303-1308. 被引量:1
  • 8Piccardi M. Background subtraction techniques: a review[C]//IEEE International Conference on Sys- tems, Man and Cybemeties, Sydney, Australia, 2004 :3099-3104. 被引量:1
  • 9Tsai D M, Lai S C. Independent component analy: sis-based background subtraction for indoor surveil- lanc([J].IEEE Transactions on Image Processing, 2009, 18(1) : 158-160. 被引量:1
  • 10Zhang Jie-yu, Barron J L. Optical flow at occlusion[C]//The Ninth Conference on Computer and Robot Vision, Toronto, Canada, 2012: 198-205. 被引量:1

共引文献188

同被引文献31

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部