期刊文献+

深度学习技术在海关风险甄别中的应用研究

Preliminary Study on Application of Deep Learning Technology in Customs Risk Screening
原文传递
导出
摘要 随着互联网的高速发展和人工智能时代的到来,越来越多从前必须由人脑完成的工作能够利用计算机技术来完成,而深度学习的出现更解决了传统机器学习算法在计算机视觉领域、自然语言处理领域表现不佳的问题,使机器也能够拥有准确感知图像和语音的能力。人脸识别是深度学习网络最常见的应用场景之一,具有自然、直接、方便的特点,且不需要检测对象配合,因此非常适合用于公共安全领域的风险检测。研究充分结合海关实际需求,搭建基于深度学习技术的人脸识别模型,提供对通关旅客进行实时风险甄别的解决方案,以及海关通关风险防控场景的理论参考,为后续深度学习技术在海关业务的研究提供支撑。 With the rapid development of the Internet and Artificial Intelligence, more and more tasks which must be completed by human brains can be completed using computer technology. The emergence of deep learning has improved the poor performance of traditional machine learning algorithms in the field of computer vision and natural language processing, which provides machines the ability to accurately perceive images and speech. Face recognition is one of the most common application scenarios for deep learning networks. It is natural, direct, convenient, and does not require the cooperation of detection objects, so it is very suitable for risk detection in the field of public safety. According to the needs of customs, we built a face recognition model based on deep learning technology, put forward a solution for real-time risk discrimination of customs passengers, and proposed a theoretical reference for the risk prevention and control of customs clearance. Also, our research provided supports for the follow-up study of deep learning in customs business.
作者 闫宇宁 苏晓伟 万振龙 YAN Yu-Ning;SU Xiao-Wei;WAN Zhen-Long(The National Information Center,General Administration of Customs,Beijing 100005)
出处 《中国口岸科学技术》 2020年第3期26-32,共7页 China Port Science and Technology
关键词 深度学习 人脸识别 神经网络 风险甄别 Deep learning face recognition neural network risk discrimination
  • 相关文献

参考文献5

二级参考文献87

  • 1张立民,刘凯.基于深度玻尔兹曼机的文本特征提取研究[J].微电子学与计算机,2015,32(2):142-147. 被引量:9
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110. 被引量:1
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893. 被引量:1
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507. 被引量:1
  • 5Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154. 被引量:1
  • 6Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469. 被引量:1
  • 7Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48. 被引量:1
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538. 被引量:1
  • 9LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404. 被引量:1
  • 10LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010. 被引量:1

共引文献726

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部