期刊文献+

基于标准离差法的模糊散度多阈值图像分割 被引量:5

FUZZY DIVERGENCE MULTI-THRESHOLD IMAGE SEGMENTATION BASED ON STANDARD DEVIATION METHOD
下载PDF
导出
摘要 由于图像具有模糊性且单阈值分割算法不能满足实际需求,同时考虑单一隶属度函数适应性较差,提出基于标准离差法的模糊散度多阈值图像分割算法。将常用的单阈值隶属度函数推广至多阈值形式,并利用标准离差法计算客观权重,通过线性加权为待分割图像构造新的隶属度函数;推导出多阈值α-型模糊散度作为选取最佳阈值的准则函数;采用粒子群算法优化准则函数以降低多阈值分割算法的运行时间。实验结果表明,该算法可以实现复杂图像多阈值分割,改善分割精度。 Due to the fuzziness of the images and the fact that the single-threshold segmentation algorithm cannot meet the actual demand,taking the poor adaptability of the single membership function into account,we propose a fuzzy divergence multi-threshold image segmentation algorithm based on the standard deviation method.We extended the common single-threshold membership function to the multi-threshold form,and used the standard deviation method to calculate the objective weight.A new membership function was constructed by linear weighting for the image to be segmented.Then,we derived the multi-threshold-type fuzzy divergence as the criterion function for selecting the optimal threshold.Finally,the particle swarm optimization was used to optimize the criterion function to reduce the running time of the multi-threshold segmentation algorithm.The experimental results show that the proposed algorithm can achieve multi-threshold segmentation of complex images,and improve the segmentation accuracy.
作者 杨梦 雷博 史露娜 兰蓉 Yang Meng;Lei Bo;Shi Lu’na;Lan Rong(School of Telecommunications and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,Shaanxi,China)
出处 《计算机应用与软件》 北大核心 2020年第5期219-225,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61571361,61671377) 西安邮电大学西邮新星团队项目(xyt2016-01)。
关键词 多阈值图像分割 模糊散度 标准离差法 隶属度函数 粒子群优化算法 Multi-threshold image segmentation Fuzzy divergence Standard deviation method Membership function Particle swarm optimization algorithm
  • 相关文献

参考文献7

二级参考文献38

  • 1任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):41-43. 被引量:169
  • 2劳丽,吴效明,朱学峰.模糊集理论在图像分割中的应用综述[J].中国体视学与图像分析,2006,11(3):200-205. 被引量:20
  • 3Renyi A.On measures of entropy and information[C]// Proc 4th Berk Symp Math Stat Probl,vol 1,California:University of California Press,1961:547-561. 被引量:1
  • 4Sharma B D,Autar R.Relative information function and their type (α,β) generalizations[J].Metrika,1974,21(1):41-50. 被引量:1
  • 5Csiszar I.Information type measures of diffrences of probability distribution and indirect observations[J].Studia Math Hungarica,1967,2:299-318. 被引量:1
  • 6Taneja I J,Kumar P.Relative information of type s,Csiszar's f-divergence,and information inequalities[J].Information Sciences,2004,166(1-4):105-125. 被引量:1
  • 7Bhandari D,et al.Fuzzy divergence,probability measure of fuzzy events and image thresholding[J].Pattern Recognition Letters,1992,13(12):857-867. 被引量:1
  • 8Bhandari D,Pal N R.Some new information measures for fuzzy sets[J].Information Sciences,1993,67(3):209-228. 被引量:1
  • 9Fan J L,Xie W X.Distance measure and induced fuzzy entropy[J].Fuzzy Sets and Systems,1999,104(2):305-314. 被引量:1
  • 10Charia T,Ray A K.Segmentation using fuzzy divergence[J].Pattern Recognition Letters,2003,24(12):1837-1844. 被引量:1

共引文献220

同被引文献55

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部