期刊文献+

基于BiLSTM模型的漏洞检测 被引量:3

Vulnerability Detection Using Bidirectional Long Short-term Memory Networks
下载PDF
导出
摘要 随着计算机技术应用的不断深化,软件的数量和需求不断增加,开发难度不断升级。代码复用以及代码本身的复杂度,使得软件中不可避免地引入了大量漏洞。这些漏洞隐藏在海量代码中很难被发现,但一旦被人利用,将导致不可挽回的经济损失。为了及时发现软件漏洞,首先从源代码中提取方法体,形成方法集;为方法集中的每个方法构建抽象语法树,借助抽象语法树抽取方法中的语句,形成语句集;替换语句集中程序员自定义的变量名、方法名及字符串,并为每条语句分配一个独立的节点编号,形成节点集。其次,运用数据流和控制流分析提取节点间的数据依赖和控制依赖关系。然后,将从方法体中提取的节点集、节点间的数据依赖关系以及控制依赖关系组合成方法对应的特征表示,并运用one-hot编码进一步将其处理为特征矩阵。最后,为每个矩阵贴上是否含有漏洞的标签以生成训练样本,并利用神经网络训练出相应的漏洞分类模型。为了更好地学习序列的上下文信息,选取了双向长短时记忆网络(Bidirectional Long Short-Term Memory Networks,BiLSTM)神经网络,并在其上增加了Attention层,以进一步提升模型性能。实验中,漏洞检测结果的精确率和召回率分别达到了95.3%和93.5%,证实了所提方法能够较为准确地检测到代码中的安全漏洞。 syntax tree to form a statement set.The customized variable name,method name and string with some uniform identifiers are replaced.A separate node number is assigned to each statement to form a node set.Secondly,data flow and control flow analysis are used to extract data dependencies and control dependencies between nodes.Then,the node set extracted from the method body,the inter-node data dependency relationship and control dependency relationship are combined into a feature representation corresponding to the method,and further processed into a feature matrix by using one-hot encoding.Finally,each matrix is labeled with a vulnerability tag to generate training samples,and a neural network is used to train the corresponding vulnerability classification model.In order to learn the context information of the sequence better,the BiLSTM network is selected and the Attention layer is added to further improve the performance of the model.In the experiment,the accuracy and recall rate of the vulnerability detection results reach 95.3%and 93.5%respectively,which confirmes that the proposed method can detect the security vulnerabilities in the code more accurately.
作者 龚扣林 周宇 丁笠 王永超 GONG Kou-lin;ZHOU Yu;DING Li;WANG Yong-chao(School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China;Ministry Key Laboratory for Safety-critical Software Development and Verification,Nanjing 211100,China)
出处 《计算机科学》 CSCD 北大核心 2020年第5期295-300,共6页 Computer Science
基金 国家自然科学基金(61972197) 中央高校基本科研业务项目(NS2019055)。
关键词 漏洞检测 特征表示 BiLSTM ATTENTION 分类模型 Vulnerability detection Feature representation BiLSTM Attention Classification model
  • 相关文献

参考文献1

二级参考文献6

共引文献18

同被引文献30

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部