期刊文献+

关于半整数维波动方程求解的几点注记 被引量:4

Notes on Solving the Wave Equation with Semi-integer-dimension
下载PDF
导出
摘要 半整数维波动方程体现的是一种由点及线、由线及面、由面及体的抽象思维方式,能够在较小求解成本、较高求解效率下揭示各种形式的波在空间中的传播特性,然而其内在机理相对复杂、对细节把控要求较高,其求解具有一定的技术门槛。以频域有限元方法为例,从1.5维声波、弹性波方程及其耦合形式的推导起步,对完全匹配层(PML)拉伸尺度选取、等效积分弱形式推导、耦合边界条件设置、极点规避等技术细节进行注记。采用声波与弹性波耦合的1.5维波动方程对二维问题进行求解,频域有限元数值解与解析解高度吻合。思想方法容易延用到由2.5维波动方程表征的,基于其他数值模拟方法的各种三维波动问题。此外,构造了3.5维波动方程的一个求解基准,为四维空间波传播特性的研究打开了局面。 The wave equation with semi-integer dimension embodies an abstract way of thinking from point to line,from line to surface,and from surface to volume.It can reveal the propagation characteristics of various forms of waves in the space at a lower cost and a higher efficiency.However,its inherent mechanism is relatively complex,and it requires a high level of detail control,so it has considerably high technological threshold in obtaining its solution.The finite element method in the frequency domain is taken as an example.Started from the deduction of 1.5-Dimensional acoustic wave equation,elastic wave equation and their coupling form,the technological details such as the selection of stretching scale of Perfectly Matched Layer(PML),the derivation of weak form of equivalent integral,the setting of coupling boundary conditions and the avoidance of poles are noted.The 1.5-Dimensional wave equation coupled with acoustic wave and elastic wave is used to solve the 2-Dimensional issues.The numerical solutions of the finite element method in frequency domain are in good agreement with the analytical solutions.Such methods of thinking can be easily extended to various 3-Dimensional wave propagation issues characterized by the 2.5-Dimensional wave equation based on other numerical simulation methods.In addition,a benchmark for solving the 3.5-Dimensional wave equation is established,which opens up a prospect for the study of wave propagation characteristics in the 4-Dimensional space.
作者 张阔 ZHANG Kuo(China Center for Information Industry Development,Beijing 100048,China;Beijing CCID Publishing&Media Co.,Ltd.,Beijing 100048,China)
出处 《新一代信息技术》 2019年第21期13-21,共9页 New Generation of Information Technology
基金 国家科技重大专项课题(项目编号:2011ZX05020)。
关键词 半整数维波动方程 频域有限元方法 声波与弹性波耦合 Wave equation with semi-integer-dimension Finite element method in frequency domain Coupling of acoustic wave and elastic wave Perfectly matched layer Weak form of equivalent integral Pole Notes
  • 相关文献

参考文献9

二级参考文献32

  • 1李芳,孙建国,王雪秋,姚健,韩复兴.2.5维声波数值模拟[J].吉林大学学报(地球科学版),2006,36(S1):177-181. 被引量:3
  • 2董良国,李培明.地震波传播数值模拟中的频散问题[J].天然气工业,2004,24(6):53-56. 被引量:54
  • 3陈可洋.完全匹配层吸收边界条件研究[J].石油物探,2010,49(5):472-477. 被引量:63
  • 4Dault C R.A comparison of finite-difference and Fourier method calculation of synthetic seismograms[J].Bull Seis Soc Am,1989,79:1210. 被引量:1
  • 5Eskola L,Hongisto H.The solution of the stationary electric field strength and potential of a point current source in a 2.5 dimensional environment[J].Geophysics Prospect,1981,29:260. 被引量:1
  • 6Song Z,Williamson F R.Frequency domain acoustic-wave modeling and inversion of croshole data:Part 1-2.5D modeling method[J].Geophysics,1995,60:784. 被引量:1
  • 7Cao S,Greenhalgh S.2.5D modeling of seismic wave propagation:Boundary condition,stability criterion,and efficiency[J].Geophysics,1998,63:2082. 被引量:1
  • 8Novias A,Santos J.2.5D finite-difference solution of the acoustic wave equation[J].Geophysical Prospecting,2005,53,523. 被引量:1
  • 9Neto F,Costa J.2.5D anisotropic elastic finite-difference modeling[C]//76th SEG Annual Meeting,Expanded Abstracts,2006,2275. 被引量:1
  • 10Takashi F,Hiroshi T.2.5D modeling of elastic waves using the pseudo spectral method[J].Geophysics J Int,1996,124:820. 被引量:1

共引文献27

同被引文献12

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部