期刊文献+

刑事案件现场图自动分类算法 被引量:2

Automated Classification Method for Crime Scene Sketches
原文传递
导出
摘要 刑事案件现场图作为刑事案件现勘记录的重要组成部分,在法庭科学领域中发挥着重要作用,然而在公安实战中,现场图绘制不规范的情况仍然时有发生。基于此,提出一种基于卷积神经网络的现场图自动分类方法,实现对全国公安机关现场勘验信息系统(简称为现勘系统)中现场图的自动分类核查。首先,利用现勘系统中现场图构建刑事案件现场图数据集,包括64098幅现场图和作为负类的27162张现场照片;然后,在AlexNet的基础上引入Inception结构,提出适用于现场图分类问题的卷积神经网络结构XCTNet;最后,多维度展现XCTNet的性能,并提取出分类错误的图像。实验结果表明:XCTNet在参数量仅为AlexNet的10%的条件下,在测试集上的准确度达到了98.65%,相比较AlexNet提升了3.78个百分点,但对自绘方位示意图的识别精度仍需要进一步提高。 A crime scene sketch plays an important role in forensic science as an important part of investigation records.However,in real life,unqualified sketches are developed in many cases.Therefore,this study proposes an automated method to classify crime scene sketches based on a convolutional neural network.First,64098crime scene sketches and 27162photos used as negative samples are collected from the national criminal scene investigation information system(crime scene survey system for short),and are manually labeled to build a crime scene sketch dataset.Then,a new convolutional neural network called XCTNet is designed by introducing“Inception”into AlexNet.Finally,the performance of XCTNet is measured with respect to many aspects,and the images misclassified by XCTNet are extracted.The results denote that XCTNet achieves an accuracy of 98.65% on the test set,which is 3.78percentage points higher than that of AlexNet;meanwhile,it only uses one tenth of the parameters of AlexNet.However,the recognition accuracy of the proposed method for self-drawn location sketches should be improved.
作者 王凯旋 李卓容 王晓宾 严圣东 唐云祁 Wang Kaixuan;Li Zhuorong;Wang Xiaobin;Yan Shengdong;Tang Yunqi(School of Criminal Investigation and Forensic Science,People′s Public Security University of China,Beijing 100038,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第4期110-119,共10页 Laser & Optoelectronics Progress
基金 公安部技术研究计划(2018JSYJC20) 中央高校基本科研业务费项目(2018JKF602)。
关键词 图像处理 计算机视觉 现场图 卷积神经网络 image processing computer vision crime scene sketches convolutional neural network
  • 相关文献

参考文献6

二级参考文献18

共引文献131

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部