摘要
基于目标的图像标注一直是图像处理和计算机视觉领域中一个重要的研究问题.图像目标的多尺度性、多形变性使得图像标注十分困难.目标分割和目标识别是目标图像标注任务中两大关键问题.本文提出一种基于形式概念分析(Formal concept analysis, FCA)和语义关联规则的目标图像标注方法,针对目标建议算法生成图像块中存在的高度重叠问题,借鉴形式概念分析中概念格的思想,按照图像块的共性将其归成几个图像簇挖掘图像类别模式,利用类别概率分布判决和平坦度判决分别去除目标噪声块和背景噪声块,最终得到目标语义簇;针对语义目标判别问题,首先对有效图像簇进行特征融合形成共性特征描述,通过分类器进行类别判决,生成初始目标图像标注,然后利用图像语义标注词挖掘语义关联规则,进行图像标注的语义补充,以避免挖掘类别模式时丢失较小的语义目标.实验表明,本文提出的图像标注算法既能保证语义标注的准确性,又能保证语义标注的完整性,具有较好的图像标注性能.
Object-based image annotation has always been an important research issue in the field of image processing and computer vision.Image annotation is very difficult because of the multi-scale and variability of the objects.Objectbased image annotation has two key issues:object segmentation and object recognition.This paper proposed an object image annotation method based on formal concept analysis(FCA)and semantic association rules.Aiming at the high overlap problem of image blocks for objectness proposal generation algorithm,the idea of concept lattice in formal concept analysis was used to classify the image blocks into several image clusters according to the commonality of image blocks and mine the image category pattern.After removing the object-noise block and the background-noise block by the category probability distribution decision and the flatness decision,respectively,the final semantic object clusters are obtained.In addition,aiming at the discrimination problem of semantic objects,we firstly got common feature descriptions by fusing features of image clusters,and generated the initial object image annotation through the classifier.The semantic association rules were then mined through the semantic image annotations to perform the semantic complement of image annotations to avoid missing smaller semantic objects when mining category patterns.Experimental results show that the proposed image annotation algorithm not only ensures the precision of semantic annotation,but also ensures the integrity of semantic annotation.It has the better performance of image annotation.
作者
顾广华
曹宇尧
崔冬
赵耀
GU Guang-Hua;CAO Yu-Yao;CUI Dong;ZHAO Yao(School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004;Hebei Provincial Key Lab-oratory of Information Transmission and Signal Processing,Qin-huangdao 066004;Institute of Information Science,Beijing Jiaotong University,Beijing 100044)
出处
《自动化学报》
EI
CSCD
北大核心
2020年第4期767-781,共15页
Acta Automatica Sinica
基金
国家自然科学基金(61303128)
河北省自然科学基金(F2017203169,F2018203239)
河北省高等学校科学研究重点项目(ZD2017080)
河北省留学回国人员科技活动项目(CL201621)资助。
关键词
图像标注
形式概念分析
语义关联规则
共性特征
特征融合
Image annotation
formal concept analysis(FCA)
semantic association rules
common features
feature fusion