摘要
沉管隧道施工过程面临众多不确定风险因素,在施工前期需采取合理方法评估施工安全风险等级和确定风险事件控制优先级。目前,已有隧道施工风险评估方法主要用来确定整体风险等级,缺少对风险事件重要性进行排序,不利于施工风险精准控制。基于此,该文采用模糊失效模式与效益分析(FMEA)、故障树分析(FTA)、层次分析法-数据包络分析(AHP-DEA)方法,构建了一种沉管隧道施工风险综合评估模型,该模型利用梯形隶属函数解决了专家认知中的主观和模糊不确定性量化问题,并结合模糊故障树计算了风险概率;然后,采用AHP-DEA方法计算风险的影响权重;最后,引入模糊数对传统FMEA方法进行了改进。将该模型应用于广东金光东隧道沉管段施工风险评估中,结果表明:沉管预制风险、管段沉放与连接风险、管节浮运风险和最终接头风险的RPN值均>0.4,且<7,风险等级为高级,须采取风险控制措施降低风险;护岸施工风险、基槽开挖风险和基础处理与回填风险事件的风险等级为中级;该模型可为沉管隧道静态风险评估提供一种合理途径。
Absrtact: Tunnel construction process is complex, and has many affecting factors.It is necessary to adopt reasonable evaluation methods to determine the safety level and prioritize the risk events.At present, most of the existing construction risk assessment methods are to determine the overall risk level of tunnel construction, lacking the importance of risk events ranking based on risk impact and risk probability, which is not conducive to the precise control of construction risk.Based on this, we construct a comprehensive risk assessment model for tunnel construction based on the methods of Fuzzy Failure Mode and Benefit Analysis(FMEA), Fault Tree Analysis(FTA),and Analytic Hierarchy Process-Data Envelopment Analysis(AHP-DEA).The trapezoidal membership function is used to quantify the subjective and fuzzy uncertainties in expert recognition, and the risk probability is calculated by combining the fuzzy fault tree.Then, the influence weight of risk factors is calculated by AHP-DEA method.Finally, the traditional FMEA method is improved by introducing fuzzy numbers.The model is applied to the construction risk assessment of immersed section of Jinguangdong Tunnel.The results show that the RPN values of immersed prefabrication risk, pipe sinking and connection risk, pipeline floating risk and final joint risk are > 0.4 and < 7, and the risk level is high.Risk control measures should be taken to reduce the risk.The risk levels of revetment construction, foundation trench excavation, foundation treatment and backfilling are intermediate, and the risks are acceptable.The model can provide a reasonable algorithm for static risk assessment of immersed tunnel.
作者
黄震
张海
张陈龙
傅鹤林
欧智勇
HUANG Zhen;ZHANG Hai;ZHANG Chenlong;FU Helin;OU Zhiyong(College of Civil Engineering and Architecture,Guangxi University,Nanning 530004,China;Key Laboratory of Disaster Prevention and Structural Safety,Guangxi University,Nanning 530004,China;School of Civil Engineering,Central South University,Changsha 410075,China;Third Engineering Department of China Railway Tunnel Bureau Group Co.,Ltd.,Guangzhou 511400,China)
出处
《灾害学》
CSCD
北大核心
2020年第2期55-61,共7页
Journal of Catastrophology
基金
国家自然科学基金重点资助项目(51538009)
国家自然科学基金资助项目(51978668,51578550,51678166)
2020年度广西高校中青年科研基础能力提升项目(2020KY01011)。