摘要
针对一类存在扰动的一维人群动态系统,在扩散系数及边界条件系数未知的情况下,设计自适应边界控制律来控制人群向设定的方向平稳疏散.借助李雅普诺夫稳态判据对自适应边界控制律作用下的人群动态系统的稳定性给出了详细的证明.系统的建模及稳定性的证明均在分布参数系统的范畴内完成,避免了模型降阶方法引起的误差的产生.通过一个仿真实例,对比人群动态系统在未施加外部控制, Robin边界控制及自适应边界控制三种情况下,当扩散系数取不同数值时,人群密度的演化情况,验证了自适应边界控制律的有效性.
For a one dimensional crowd dynamic system with disturbance, an adaptive boundary control law is designed to control the crowd to evacuate smoothly in the set direction when the diffusion coefficient and the boundary condition coefficients are unknown. The stability of the crowd dynamic system under adaptive boundary controller is proved in detail by means of the Lyapunov method. The modeling of the system and the proof of stability are all done within the scope of the distributed parameter system, which can avoid errors caused by the model reduction. Illustrated with a simulation example, the effectiveness of the adaptive boundary controller is verified by comparing the density evolution of the crowd dynamic system in three different situations(without external controller, with Robin boundary controller and with adaptive boundary controller) when the diffusion coefficient takes different values.
作者
秦伟
CONTRERAS Sergio
崔宝同
QIN Wei;CONTRERAS Sergio;CUI Bao-tong(School of IoT and Engineering,Jiangnan University,Wuxi Jiangsu 214122,China;Department of Electrical and Computer Engineering,University of Nevada Las Vegas,Las Vegas 89154,USA)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2020年第3期603-609,共7页
Control Theory & Applications
基金
国家自然科学基金项目(61807016,61473136)
江苏省研究生科研与实践创新计划项目(KYCX17-1460)资助.
关键词
人群动态系统
分布参数系统
自适应边界控制
连续体模型
crowd dynamic system
distributed parameter system
adaptive boundary control
continuum model