期刊文献+

主被动一体悬架构型的多目标粒子群最优控制 被引量:6

Multi-objective particle swarm optimization linear quadratic regulator controller base on integrated suspension
下载PDF
导出
摘要 为了解决轮毂电机电动汽车中轮毂电机导致的振动负效应问题,提出了将动态减振与主动悬架结合的悬架新构型方案.针对新构型中结构及控制参数复杂的特点,建立了能够表征平顺性、操稳性以及悬架作动效率的11自由度整车动力学模型.设计基于新构型的多目标粒子群线性二次最优(MOPSO–LQR)控制器.对模型进行仿真分析,仿真结果表明,新构型方案能够实现车辆平顺性、操稳性以及悬架效率的全局最优,对比传统轮毂电机悬架构型方案,在解决轮毂电机振动负效应问题上有良好的效果. In order to deal with the vibration negative effects caused by in-wheel motor in electric vehicle, a novel suspension configuration was proposed based on dynamic damping and active suspension. With the issues of complicated parameters in new suspension configuration and its control, an 11-degree-of-freedom vehicle dynamic model was established to reveal the indexes of smoothness, stability and the dynamic efficiency of suspension. Multi-objective particle swarm optimization linear quadratic regulator(MOPSO–LQR) controller is proposed for the new configuration. The simulation was demonstrated, and the results indicated that the proposed suspension configuration could achieve global optimum on smoothness, stability and dynamic efficiency of suspension, simultaneously, the new suspension configuration had better inhibition on vibration negative effects of in-wheel motor than conventional suspension.
作者 胡一明 李以农 李哲 杨超 HU Yi-ming;LI Yi-nong;LI Zhe;YANG Chao(College of Automotive Engineering,Chongqing University,Chongqing 400030,China;State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing 400030,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第3期574-583,共10页 Control Theory & Applications
基金 重庆市基础研究与前沿探索项目(CSTC2018JCYJAX0630) 国家重点研发计划子课题(2017YFB0102603-3)资助.
关键词 电动汽车 轮毂电机 主被动一体悬架构型 MOPSO–LQR控制 electric vehicle in wheel motor integrated suspension configuration MOPSO–LQR controller
  • 相关文献

参考文献6

二级参考文献64

  • 1方敏,汪洪波,陈无畏.汽车主动悬架系统H_∞控制器的降阶[J].控制理论与应用,2007,24(4):553-560. 被引量:14
  • 2祁建城磁悬浮技术在汽车工程中应用的分析与探讨[C].中国农业机械学会成立40周年庆典暨2003年学术年会.中国北京,2003:1057-1061. 被引量:2
  • 3ISHIBUCHI H, TSUKAMOTO N, NOJIMA Y. Evolutionary many- objective optimization: a short review [C] //Proceedings of 2008 1EEE Congress on Evolutionary Computation. Hong Kong: IEEE, 2008:2424 - 2431. 被引量:1
  • 4SCHUTZE O, LARA A, COELLO C C A. On the influence of the number of objectives on the hardness of a multiobjective optimiza- tion problem [J]. 1EEE Transactions on Evolutionary Computation, 2011, 15(4): 444 - 455. 被引量:1
  • 5DEB K, KUMAR A. Interactive evolutionary multi-objective opti- mization and decision-making using reference direction method [C] //Proceedings of the 9th Annual Conference on Genetic and Evolu- tionary Computation. London: ACM, 2007:781 - 788. 被引量:1
  • 6SAID L B, BECHIKH S, GHEDIRA K. The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making [J]. IEEE Transactions on Evolutionary Computation, 2010, 14(5): 801 - 818. 被引量:1
  • 7THIELE L, MIETTINEN K, KORHONEN P J, et al. A preference- based evolutionary algorithm for multi-objective optimization [J]. Evolutionary Computation, 2009, 17(3): 411 - 436. 被引量:1
  • 8KENNEDY J, EBERHART R C. Particle swarm optimization [C] //Proceedings of the 4th IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 1995:1942 - 1948. 被引量:1
  • 9ZHANG E Z, WU Y E CHEN Q W. A practical approach for solv- ing multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization [J]. Reliability En- gineering & System Safety, 2014, 127:65 -76. 被引量:1
  • 10WICKRAMASINGHE U K, LI X. Using a distance metric to guide pso algorithms for many-objective optimization [C] //Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computa- tion. Montreal, Quebec, Canada: ACM, 2009:667 - 674. 被引量:1

共引文献113

同被引文献67

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部