期刊文献+

任意弹性边界下非局部梁的横向振动特性研究 被引量:8

Transverse vibration characteristics of nonlocal beams with arbitrary elastic boundary conditions
下载PDF
导出
摘要 基于非局部理论,对任意弹性边界Euler-Bernoulli梁的横向振动特性进行分析。在结构两端边界引入横向位移弹簧和旋转约束弹簧,通过设置其刚度大小来模拟从自由到固支的各种边界条件。计算中先将梁的位移函数以改进傅里叶级数形式表示,然后采用基于Lagrange泛函的瑞利-里兹法建立关于改进傅里叶级数系数的线性方程组。根据此方程组有非零解的条件,通过求解广义特征值问题得到梁的固有频率和振型曲线。算例结果表明所提方法具有合理性且具有良好的精度,并进一步探究非局部影响系数与弹性边界约束刚度对非局部梁振动的影响。 The transverse vibration of nonlocal Euler-Bernoulli beams with arbitrary elastic boundary is analyzed based on the nonlocal theory.The transverse spring and the rotational spring are introduced at both ends of the beam structure.The stiffness of the two ends is properly chosen to simulate the different boundary conditions.First,the displacement function of the beam is represented by the improved Fourier series.Then,the Rayleigh-Ritz method based on the Lagrange function is used to create a system of linear equations about the spectro-geometric coefficients.According to the condition for non-zero solution,the natural frequencies and vibration modes of the beam structure are obtained by solving the generalized eigenvalue problem.Finally,the characteristics of generality,accuracy and efficiency of the proposed method are fully demonstrated and verified through numerical examples.The influence of nonlocal characteristic parameters and restraint stiffness on vibration of the nonlocal beam is further studied.
作者 鲍四元 曹津瑞 周静 BAO Si-yuan;CAO Jin-rui;ZHOU Jing(School of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China)
出处 《振动工程学报》 EI CSCD 北大核心 2020年第2期276-284,共9页 Journal of Vibration Engineering
关键词 结构振动 横向振动 非局部理论 谱几何法 弹性边界条件 structural vibration transverse vibration nonlocal theory spectro-geometric method elastic boundary condition
  • 相关文献

参考文献5

二级参考文献22

  • 1杨林桢,孔祥阳,王炜.粘弹性地基上梁的解析解[J].黑龙江交通科技,2007,30(1):26-27. 被引量:1
  • 2虞吉林 郑哲敏.一种非局部弹塑性连续体模型与裂纹尖端附近的应力分布[J].力学学报,1984,16(5):485-494. 被引量:5
  • 3彭震,陆海翔,杨志安.Winkler地基梁在温度场中受简谐激励作用下的主共振和主参数共振分析[J].机械强度,2007,29(4):695-698. 被引量:8
  • 4Eringen A C, Edelen D G B. On nonlocal elasticity [ J]. International Journal of Engineering Science, 1972, 10 ( 3 ) : 233 - 248. 被引量:1
  • 5Eringen A C. On differential equation of nonlocal elasticity and solutions of screw dislocation and surface waves [ J ]. Journal of Applied Physics, 1983, 54(9) : 4703 -4710. 被引量:1
  • 6Peddieson J, Buchanan G R, McNitt R P. Application of nonlocal continuum models to nanotechnology [ J ]. International Journal of Engineering Science, 2003, 41 ( 3 - 5) : 305 -312. 被引量:1
  • 7Sun Y G, Zhou Z G. Stress field near the crack tip in nonlocal anisotropic elasticity [ J ]. European Journal of Mechanics A/Solids, 2004, 23(2): 259-269. 被引量:1
  • 8Zhang Y Q, Liu G R, Xie X Y. double-walled carbon nanotubes elasticity [ J ]. Physical Review - 195410. Free transverse vibrations of using a theory of nonlocal B, 2005,71 ( 19 ) : 195404. 被引量:1
  • 9Wang Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics [ J ]. Journal of Applied Physics,2005, 98(12): 124301 -124306. 被引量:1
  • 10Wang Q, Varadan V K. Vibration of carbon nanotubes studied using nonlocal continuum mechanics E J ]- Smart Materials and Structures, 2006, 15 (2) : 659 - 666. 被引量:1

共引文献18

同被引文献57

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部