摘要
工业机器人在执行打磨、抛光和装配任务时,工作空间中末端执行器微小的位置偏差可能产生巨大接触力,进而对机器人及目标物造成损毁,接触作业中添加力控制功能可以很好地避免类似事件的发生,因此有必要对机器人的力位控制进行深入研究。首先,推导了工作空间的工业机器人动力学模型,进而分别设计了基于PID的两种主流力/位控制器——力/位置混合控制器和阻抗控制器,并证明了控制系统的稳定性。为了更好地研究两种控制系统的特性,首次基于同等机器人模型进行了比较系统的实验研究,研究结果表明在期望接触力为10 N的情况下,阻抗控制表现出更加优越的柔顺性,其在力与位置控制方面精度更高,易于实现。研究结果对于力/位置控制技术的工程应用具有一定的借鉴意义。
Industrial robots in grinding、polishing and assembly tasks,the small position deviation of the end executor in the workspace may produce huge contact force,which will damage the robot and target,Adding force control function in contact operation can avoid similar incidents very well,Therefore,it is necessary to further study the force-position hybird control of robots.Firstly,The dynamic model of industrial robot in workspace is deduced,Then two main force position controllers based on PID are designed respectively:force position hybrid controller and the impedance controller,and the stability of control system is proved.In order to prove the better research on the characteristics of the two control systems,a comparatively systematic experimental study based on the same robot model is carried out for the first time,The results show that the impedance control shows better flexibility when the expected contact force is 10 N,and it has higher accuracy in force and position control,which is easy to realize.The research results have important reference value for the engineering application of force position control technology.
作者
陈浩文
张文辉
钟秋波
周书华
叶晓平
CHEN Haowen;ZHANG Wenhui;ZHONG Qiubo;ZHOU Shuhua;YE Xiaoping(School of Automation,Nanjing Institute of Technology,Nanjing 211167,Jiangsu;State Key Laboratory for Manufacturing Systems Engineering,Xi'an 710000,Shaanxi;Automobile Technology of Department,Zhejiang Technical Institute of Economics,Hangzhou 310000,Zhejiang;Zhejiang Key Laboratory of Digital Design and Intelligent Manufacturing of Cultural and Creative Products,Lishui 323000,Zhejiang)
出处
《丽水学院学报》
2020年第2期8-14,共7页
Journal of Lishui University
基金
国家自然科学基金面上项目“基于本体的复杂产品功能语义表示与智能分解研究”(61772247)
南京工程学院自然科学基金“面向非合作目标的空间机器人控制方法研究”(YKJ201821)
浙江省自然科学基金“基于神经网络的空间机械臂死区补偿控制方法研究”(LY18F030001)
机械制造系统工程国家重点实验室开放基金“人形机器人复杂运动控制关键技术研究”(sklms2019011)。