期刊文献+

动态脑功能网络Rich-club时空观测方法 被引量:1

Spatiotemporal Observation Method of Rich-club in Dynamic Brain Function Network
下载PDF
导出
摘要 基于fMRI-BOLD信号的脑功能网络重要脑区时变特征辨识问题,提出了一种动态脑网络Rich-club时空观测模型的构建方法。该方法通过将样本所有时间采样点的Rich-club集合相似性进行聚类,从而将脑功能网络的空间与时间融合在一起,并构建脑网络中动态Rich-club重要性评价模型,定量地描述脑网络中Rich-club集合在时间以及空间两个维度的综合重要程度,从而为脑功能网络重要脑区的动态特征观测提供了一种有效的方法,也为分析健康人与自闭症患者之间的脑区重要性差异提供了依据。 Aiming at time-varying feature identification of important brain regions in brain functional network based on fMRI-BOLD signal,a method of constructing time-varying observation model of dynamic brain network Rich-club is proposed in this paper.By clustering the similarity of Rich-club set of all time sampling points for one people,the temporal and spatial information of the brain function network is fused,and then the dynamic Rich-club importance evaluation model for brain network is built,which can describe the spatiotemporal comprehensive importance of the important brain regions quantitatively.Our work presents an effective method for the dynamic feature observation of the important brain regions in brain dynamic function network,and it also provides a basis technology for analyzing the differences of the important brain regions between healthy people and autistic people.
作者 盛景业 王彬 薛洁 淡杨超 刘畅 SHENG Jingye;WANG Bin;XUE Jie;DAN Yangchao;LIU Chang(Faculty of Information Engineering&Automation,Kunming University of Science&Technology,Kunming,650500,China;Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming,650500,China;Narcotics Control Administration of Yunnan Provincial Public Security Department,Kunming,650228,China)
出处 《数据采集与处理》 CSCD 北大核心 2020年第2期239-250,共12页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(81771926,61763022,61863018)资助项目。
关键词 动态脑功能网络 重要脑区 时空观测 RICH-CLUB dynamic brain function network important brain regions time and space observation Rich-club
  • 相关文献

参考文献3

二级参考文献23

  • 1Hutchison RM, Womelsdorf 丁, Gati JS, et al. Resting-state net-works show dynamic functional connectivity in awake humans and an-esthetized macaques. Hum Brain Mapp, 2013,34(9) :2154-2177. 被引量:1
  • 2Allen EA, Damaraju E, Plis SM, et al. Tracking whole-brainconnectivity dynamics in the resting state. Cereb Cortex, 2014,24(3):663-676. 被引量:1
  • 3Zalesky A, Fornito A, Cocchi L, et al. Time-resolved resting-state brain networks. Proc Natl Acad Sci USA, 2014 , 111 (28):10341-10346. 被引量:1
  • 4Calhoun VD, Miller R, Pearlson G, et al. The chronnectome:Time-varying connectivity networks as the next frontier in fMRIdata discovery. Neuron, 2014, 84(2) :262-274. 被引量:1
  • 5Liao W, Wu GR, Xu Q, et al. DynamicBC: A MATLAB toolboxfor dynamic brain connectome analysis. Brain Connect, 2014, 4(10):780-790. 被引量:1
  • 6Damaraju E, Allen EA, Belger A, et al. Dynamic functional con-nectivity analysis reveals transient states of dysconnectivity inschizophrenia. Neuroimage Clin,2014, 5 : 298-308. 被引量:1
  • 7Leonardi N, Richiardi J, Gschwind M, et al. Principal compo-nents of functional connectivity: A new approach to study dy-namic brain connectivity during rest. Neuroimage, 2013,83:937-950. 被引量:1
  • 8Li X, Zhu D, Jiang X, et al. Dynamic functional connectomicssignatures for characterization and differentiation of PTSD pa-tients. Hum Brain Mapp, 2014, 35(4) :1761-1778. 被引量:1
  • 9Calhoun VD, Adali T. Multisubject independent component anal-ysis of fMRI: A decade of intrinsic networks, default mode, andneurodiagnostic discovery. IEEE Rev Biomed Eng, 2012, 5:60-73. 被引量:1
  • 10Du YH, Fan Y. Group information guided ICA for fMRI data a-nalysis. Neuroimage, 2013, 69 : 157-197. 被引量:1

共引文献9

同被引文献5

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部