期刊文献+

基于注意力模型的人脸关键点检测算法 被引量:4

Detection algorithm for key points on face based on attention model
下载PDF
导出
摘要 人脸关键点定位因受到表情、光照、姿态等的影响,常常会出现大的误差。为了准确地定位到人脸的关键点,提出了一种基于注意力模型的人脸关键点检测算法。先是利用可变型模型(DPM)算法检测出图片中的人脸区域,然后结合残差网络(ResNet)和收缩激励网络(SeNet)对该区域进行人脸关键点定位。实验结果表明,该算法在人脸数据集上获得了较高的准确率,证明了该算法的有效性。 Due to the influence of expressions, illuminations, gestures, etc., large errors often occur when positioning key points of a face. In order to accurately locate the key points of the face, a detection algorithm for key points on a face based on attention mechanism is proposed. Firstly, the deformable part model(DPM) algorithm is used to detect the face region in the picture, and then the focal point of the face is located in the region using ResNet and SeNet. The experimental results show that the algorithm achieves good accuracy on the face dataset, and prove the effectiveness of the algorithm.
作者 秦晓飞 盛凯 朱玥 杨勇 赵刚 贾程 李成名 鲁小东 周坚风 QIN Xiaofei;SHENG Kai;ZHU Yue;YANG Yong;ZHAO Gang;JIA Cheng;LI Chengming;LU Xiaodong;ZHOU Jianfeng(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Hangzhou Yimei Industrial Co.,Ltd.,Hangzhou 310000,China;Hangzhou Yimei Photoelectric Technology Co.,Ltd.,Hangzhou 310000,China)
出处 《光学仪器》 2020年第2期45-49,共5页 Optical Instruments
基金 国家重点研究发展计划(2016YFF0101400)。
关键词 人脸关键点检测 注意力模型 DPM人脸检测 face key point detection attention model DPM face detection
  • 相关文献

参考文献1

二级参考文献16

  • 1Dantone M, Gall J, Fanelli G, et al. Real-time facial feature detection using conditional regression forests[C] //Proc of International Conference on Computer Vision and Pattern Recognition. 2012:2578-2585. 被引量:1
  • 2Zhang Wencong, Chen Hong, Yao Peng, et al. Precise eye localization with AdaBoost and fast radial symmetry[C] //Proc of International Conference on Computational Intelligence and Security. 2006:725-730. 被引量:1
  • 3Liu Xiaoming. Generic face alignment using boosted appearance mo-del[C] //Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2007:1-8 . 被引量:1
  • 4Lin Liang, Rong Xiao, Fang Wen, et al. Face alignment via component-based discriminative search[C] //Proc of the 10th European Conference on Computer Vision. 2008:72-85. 被引量:1
  • 5Huang Yuchi, Liu Qingshan, Metaxas D N, et al. A component-based framework for generalized face alignment systems[J] . IEEE Trans on Man, and Cybernetics:Part B, 2011, 41(1):287-298. 被引量:1
  • 6Hu Jiani, Li Yu, Deng Weihong, et al. Locating facial features by robust active shape model[C] //Proc of the 2nd IEEE International Conference on Network Infrastructure and Digital Content. 2010:196-200. 被引量:1
  • 7Xiong Pengfei, Huang Lei, Liu Changping. Initialization and pose alignment in active shape model[C] //Proc of the 20th International Conference on Pattern Recognition. 2010:3971-3974. 被引量:1
  • 8Lu Huchuan, Shi Wengang. Skin-active shape model for face alignment[C] //Proc of Computer Graphics, Imaging and Vision Confere-nce. 2005:187-190. 被引量:1
  • 9Lauer F, Suen C Y, Bloch G. A trainable feature extractor for handwritten digit recognition[J] . Pattern Recognition, 2007, 40(6):1816-1824. 被引量:1
  • 10Ahranjany S S, Razzazi F, Ghassemian M H. A very high accuracy handwritten character recognition system for Farsi/Arabic digits using convolutional neural networks[C] //Proc of the 5th IEEE Internatio-nal Conference on Bio-Inspired Computing:Theories and Applications. 2010:1585-1592. 被引量:1

共引文献26

同被引文献31

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部