期刊文献+

基于选择聚类集成的相似流形学习算法 被引量:6

Similar Manifold Learning Based on Selective Cluster Ensemble for Image Clustering
下载PDF
导出
摘要 流形学习是当今最重要的研究方向之一.约简维度的选择影响着流形学习方法的性能.当约简维度恰好是本征维度时,更容易发现原始数据的内在性质.然而,本征维度估计仍然是流形学习的一个研究难点.在此基础上,提出了一种新的无监督方法,即基于选择聚类集成的相似流形学习(SML-SCE)算法,避免了对本征维度的估计,并且性能表现良好.SML-SCE利用改进的层次平衡K-means(MBKHK)方法生成具有代表性的锚点,高效地构造相似度矩阵.随后计算得到了多个不同维度下的相似低维嵌入,这些低维嵌入是对原始数据的不同表示,而且不同低维嵌入之间的多样性有利于集成学习.因此,SML-SCE采用选择性聚类集成方法作为结合策略.对于通过K-means聚类得到的相似低维嵌入的聚类结果,采用聚类间的归一化互信息(NMI)作为权重的衡量标准.最后,舍弃权重较低的聚类,采用基于权重的选择性投票方案,得到最终的聚类结果.在多个数据集的大量实验结果表明了该方法的有效性. Manifold learning is one of the most important research directions nowadays.The performance of manifold learning methods is affected by the choice of reduced dimension.When the reduced dimension is the intrinsic dimension,it is easily to handle the original data.However,intrinsic dimension estimation is still a challenge of manifold learning.In this study,a novel unsupervised method is proposed,called similar manifold learning based on selective cluster ensemble(SML-SCE),which avoids the estimation of intrinsic dimension and achieves a promising performance.SML-SCE generates representative anchors with modified balanced K-means based hierarchical K-means(MBKHK)to construct similarity matrix efficiently.Moreover,multiple similar low-dimensional embeddings in different dimensions are obtained,which are the different presentations of original data.The diversity of these similar low-dimensional embeddings is benefit to the ensemble learning.Therefore,selective cluster ensemble method is taken advantage of as the combination rule.For the clustering results obtained by K-means in similar low-dimensional embeddings,the normalized mutual information(NMI)is calculated between clusterings as weight.Finally,the low weight clusterings is discarded and a selective vote scheme is adopted based on weight to obtain the final clustering.Extensive experiments on several data sets demonstrate the validity of the proposed method.
作者 罗晓慧 李凡长 张莉 高家俊 LUO Xiao-Hui;LI Fan-Zhang;ZHANG Li;GAO Jia-Jun(School of Computer Science and Technology,Soochow University,Suzhou 215006,China)
出处 《软件学报》 EI CSCD 北大核心 2020年第4期991-1001,共11页 Journal of Software
基金 国家重点研发计划(2018YFA070170,2018YFA0701701) 国家自然科学基金(61672364)。
关键词 相似流形学习 流形学习 集成学习 维度约简 similar manifold learning manifold learning ensemble learning dimensionality reduction
  • 相关文献

参考文献1

二级参考文献14

  • 1Estivill-Castro V. Why so many clustering algorithms-A position paper. SIGKDD Explorations, 2002,4(1):65-75. 被引量:1
  • 2Dietterich TG. Machine learning research: Four current directions. AI Magazine, 1997,18(4):97-136. 被引量:1
  • 3Breiman L. Bagging predicators. Machine Learning, 1996,24(2):123-140. 被引量:1
  • 4Zhou ZH, Wu J, Tang W. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 2002,137(1-2):239-263. 被引量:1
  • 5Strehl A, Ghosh J. Cluster ensembles-A knowledge reuse framework for combining partitionings. In: Dechter R, Kearns M,Sutton R, eds. Proc. of the 18th National Conf. on Artificial Intelligence. Menlo Park: AAAI Press, 2002. 93-98. 被引量:1
  • 6MacQueen JB. Some methods for classification and analysis of multivariate observations. In: LeCam LM, Neyman J, eds. Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967,1:281-297. 被引量:1
  • 7Blake C, Keogh E, Merz CJ. UCI Repository of machine learning databases. Irvine: Department of Information and Computer Science, University of California, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html 被引量:1
  • 8Modha DS, Spangler WS. Feature weighting in k-means clustering. Machine Learning, 2003,52(3):217-237. 被引量:1
  • 9Zhou ZH, Tang W. Clusterer ensemble. Technical Report, Nanjing: AI Lab., Department of Computer Science & Technology,Nanjing University, 2002. 被引量:1
  • 10Fern XZ, Brodley CE. Random projection for high dimensional data clustering: A cluster ensemble approach. In: Fawcett T, Mishra N, eds. Proc. of the 20th Int'l Conf. on Machine Learning. Menlo Park: AAAI Press, 2003. 186-193. 被引量:1

共引文献94

同被引文献73

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部