期刊文献+

基于Python的函数式并行编程语言特征提取研究 被引量:5

Research on Feature Extraction of Functional Parallel Programming Language Based on Python
下载PDF
导出
摘要 为了提高编程语言的并行调试和纠错分析能力,提出基于Python的函数式并行编程语言特征提取方法。建立并行编程语言的特征序列分布模型,采用连续概率密度泛函分析方法构建并行编程语言特征分布函数式,通过Python进行函数式并行编程语言的语义分割,提取函数式并行编程语言的语义关联特征量,根据语义关联性进行函数式并行编程语言特征优化提取。仿真结果表明,采用该方法进行函数式并行编程语言特征提取的准确性较高,语义分辨能力较强,提高了函数式并行编程语言的并行调试和纠错分析能力。 In order to improve the ability of parallel debugging and error correction analysis of programming language,a python-based feature extraction method of functional parallel programming language is proposed.The characteristics of parallel programming language sequence distribution model is established,the continuous probability density functional analysis method was used to construct parallel distribution in functional programming language characteristics,through the Python functional semantic segmentation of parallel programming language,extraction and functional semantic correlation characteristic of parallel programming language,according to the semantic relevance for functional parallel programming language features to optimize the extraction.The simulation results show that the method has high accuracy in feature extraction and strong semantic resolution,which improves the ability of parallel debugging and error correction analysis of functional parallel programming languages.
作者 陶婧 TAO Jing(Wuhu Institute of Technology,Wuhu 241000,China)
出处 《长春师范大学学报》 2020年第4期48-52,共5页 Journal of Changchun Normal University
基金 2015年度安徽省高校自然科学重点研究项目“基于移动通讯平台的特种设备检验检测信息管理系统研究”(KJ2015A411) 芜湖职业技术学院人文重点项目“大数据背景下ERP数据新价值分析与研究”(wzyrwzd201904)。
关键词 PYTHON 函数式 并行编程语言 特征提取 Python function parallel programming language feature extraction
  • 相关文献

参考文献9

二级参考文献57

  • 1李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:405
  • 2李德元.二维非定常流体力学计算方法[M].北京:科学出版社,1987.. 被引量:7
  • 3张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:197
  • 4He Hai-bo ,Edwardo A Garcia. Learning from imbalanced data[ J]. IEEE Transactions on Knowledge and Data Engineering, 2009,21 (9) :1263-1284. 被引量:1
  • 5Yao Pei, Wang Zhong-sheng, Jiang Hong-kai, et al. Fault diagnosis method based on cs-boosting for unbalanced training data[ J ]. Journal of Vibration, Measurement & Diagnosis,2013,33 ( 1 ) : 111-115. 被引量:1
  • 6Powers David Martin. Evaluation: from precision, recall and Fmeasure to ROC, informedness, markedness and correlation [ J ]. Journal of Machine Learning Technologies ,2011,2 ( 1 ) :37-63. 被引量:1
  • 7Shao Kuoyi, Zhai Yun, Sui Hai-feng et al. A new over-sample method based on distribution density [ J ]. Journal of Computers, 2014,9(2) :483-490. 被引量:1
  • 8Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, et al. Smote: synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research,2002,16( 1 ) :321-357. 被引量:1
  • 9Claudia Galarda Varassin, Alexandre Plastino, Helena Cristina Da Gama Leitao, et al. Undersampling strategy based on clustering to improve the performance of splice site classification in human genes in database and expert systems applications[ C]. 24th IEEE Interna- tional Workshop on DEXA,2013:85-89. 被引量:1
  • 10Mahesh V Joshi, Ramesh C Agarwal,Vipin Kumar. Mining needles in a haystack:classifying rare classes via two-phase rule induction [ C ]. Proceedings of the ACM SIGMOD International Conference on Management of Data,2001:91-102. 被引量:1

共引文献277

同被引文献16

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部