摘要
气体绝缘全封闭组合电器(GIS)/气体绝缘输电线路(GIL)长期运行中绝缘子表面积聚的电荷严重威胁电气设备的稳定运行,改善绝缘材料表面化学物理性质能有效提升其绝缘性能。该文采用低温等离子体技术对环氧树脂绝缘试样进行氟化改性处理,通过原子力显微镜(AFM)、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线光电子能谱(XPS)分析了改性前后绝缘试样的微观物理形貌及化学组分。等离子体处理可以高效可控地在环氧树脂表面大面积接枝氟元素,样片表面粗糙度随着改性处理时间呈现先增大后降低的现象,改性处理后样片的空穴陷阱能级略有变深、电子陷阱能级先变浅后变深。改性处理10min样片在C4F7N/CO2混合气体中的交直流沿面放电均达到最大值。实验结果表明适当的氟化处理造成表面粗糙度的增加,导致爬电距离增加,正电荷消散变慢,负电荷消散变快,最终使得样片的闪络电压得到了提升。过度的氟化处理使得样片基体结构受损,氟元素剥离,最终造成绝缘强度下降。
In the long-term operation of gas insulated switchgear(GIS)/gas insulated transmission line(GIL),the charge on the surface of the spacer seriously threatens the stable operation of the equipment.Improving the chemical and physical properties of the spacer surface can effectively improve its insulation performance.In this paper,the epoxy resin insulation samples were fluorinated by low temperature plasma technique.The microscopic physical and chemical compositions of the modified insulation samples were analyzed by AFM,SEM,EDS and XPS.Plasma fluorination can introduce the fluorine element on the surface of the epoxy resin efficiently and controllable.The surface roughness of the sample increases first and then decreases with the modification time.The hole energy level is slightly deeper,and the trap energy level becomes shallower first and then deeper.The AC and DC creeping flashover in the C4F7N/CO2 mixed gas reached the maximum value in the modified 10 min sample.The experimental results show that the appropriate fluorination causes an increase in roughness,which leads to an increase in creepage distance,also cause a slower dissipation of positive charge and a faster dissipation of negative charge,finally increase in the flashover voltage of the sample.Excessive fluorination causes damage to the structure of the sample,and the fluorine element is peeled off,resulting in a decrease in dielectric strength.
作者
詹振宇
阮浩鸥
律方成
刘伟
李志兵
谢庆
Zhan Zhenyu;Ruan Haoou;LüFangcheng;Liu Wei;Li Zhibing;Xie Qing(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University,Beijing 102206 China;Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University,Baoding 071003 China;State Grid Anhui Electric Power Research Institute,Hefei 230022 China;China Electric Science Research Institute Co.Ltd,Beijing 100192 China)
出处
《电工技术学报》
EI
CSCD
北大核心
2020年第8期1787-1798,共12页
Transactions of China Electrotechnical Society
基金
国家重点研发计划(2017YFB0902500)
国家电网有限公司总部科技项目(环保型管道输电关键技术)
中央高校基本科研业务费青年培养项目(2018QN002)资助。