期刊文献+

基于改进语音特征与极限学习机的语音端点检测

Voice activity detection based on improved speech features and extreme learning machine
下载PDF
导出
摘要 语音端点检测(Voice Activity Detection,VAD),是指在给定语音信号帧中判别语音是否存在,鲁棒的VAD有助于提高语音应用的自动化效率,例如语音增强、说话人识别、助听器等.为了提高低信噪比下语音端点检测的精度以及效率,提出了一种新的语音特征-低频消噪能量(Low Frequency De-noising Energy,LFDE),将其应用于VAD中,并利用LFDE与现有的声学特征(梅尔频率倒谱参数、共振峰频率)结合训练极限学习机(Extreme Learning Machine,ELM)分类器.仿真实验发现,端点检测的精度与效率都有提高. Voice Activity Detection(VAD)refers to the determination of the existence of speech in a given speech signal frame.Robust VAD helps to improve the automation efficiency of speech applications,such as speech enhancement,speaker recognition,and hearing aids and so on.In order to improve the accuracy and efficiency of voice activity detection under low SNR,a new speech feature-Low Frequency De-noising Energy(LFDE)is proposed,which is applied to VAD and utilizes LFDE and existing acoustic features(Mel frequency cepstrum parameters,formants Frequency)combined with the Extreme Learning Machine(ELM)classifier.Simulation experiments show that the accuracy and efficiency of voice activity detection are improved.
作者 罗庆 包亚萍 俞强 LUO Qing;BAO Ya-ping;YU Qiang(Department of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China)
出处 《微电子学与计算机》 北大核心 2020年第3期37-41,共5页 Microelectronics & Computer
关键词 低频消噪能量 梅尔倒谱参数 共振峰频率 极限学习机 low frequency de-noising energy mel-frequency cepstrumcoefficient formant frequency extreme learning machine
  • 相关文献

参考文献4

二级参考文献42

  • 1李晔,张仁智,崔慧娟,唐昆.低信噪比下基于谱熵的语音端点检测算法[J].清华大学学报(自然科学版),2005,45(10):1397-1400. 被引量:37
  • 2赵彦平,赵晓晖.用于语音端点检测的鲁棒性特征提取新方法[J].吉林大学学报(工学版),2006,36(1):77-81. 被引量:6
  • 3Koichi Yamamoto, Firas Jabloun, Klaus Reinhard, et al. Robust endpoint detection for speech recognition based on discriminative feature extraction[C]// IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006. 被引量:1
  • 4Lu X, Unoki M, Isotani R,et al. Voice activity detection in a regularized reproducing kernel Hilbert space [C]//INTERSPEECH, Makuhari, Japan, 2010. 被引量:1
  • 5Chang J K, Kim N S, Mitra S K. Voice activity detection based on multiple statistical models[J]. IEEE Trans Signal Process, 2006, 54 (6): 1965- 1976. 被引量:1
  • 6Hyeopwoo Lee, Dongsuk Yook. Space-time voice activity detection[J]. IEEE Trans Consumer Electronics, 2009,55(3) :1471-1476. 被引量:1
  • 7Li K,Swamy M N S, Ahmad M O. An improved voice activity detection using higher order statistics[J]. IEEE Trans Speech and Audio Processing, 2005, 13(5): 965-974. 被引量:1
  • 8Cho Namgook, Kim Eun-Kyoung. Enhanced voice activity detection using acoustic event detection and classification[J]. IEEE Trans Consumer Electronics, 2011, 57(1):196-202. 被引量:1
  • 9Shen J L,,Hung J W,Lee L S.Robust entropy-basedendpoint detection for speech recognition in noisyenvironments[].International Conference on SpokenLanguage Processing.1998 被引量:1
  • 10Tucker R.Voice activity detection using a periodicitymeasure[].IEEE Proceedings of CommunicationsSpeechand Vision.1992 被引量:1

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部