期刊文献+

全局混沌蝙蝠优化算法 被引量:8

Global Chaotic Bat Optimization Algorithm
下载PDF
导出
摘要 为提高蝙蝠算法进行特征选择的正确率,提出全局混沌蝙蝠优化算法(GCBA).首先,GCBA采用混沌映射方法使种群的初始化能够遍历整个解空间,获取蝙蝠初始的最优位置,使其具有更加丰富的种群,解决了初始化种群随机性的问题.同时,GCBA引入当前粒子的最优解和当前种群的最优解跳出局部最优解,可有效避免算法早熟,有利于提高算法的全局搜索能力.蝙蝠算法(BA)、粒子群算法(PSO)与遗传算法(GA)在10个数据集上的测试结果表明,所提算法具有更高的分类精度和更强的跳出局部最优的能力. In order to improve the accuracy of feature selection of bat algorithm,a global chaotic bat optimization algorithm(GCBA)was proposed.Firstly,GCBA adopts chaotic mapping method to enable the initialization of the population to traverse the entire solution space,obtain the optimal position of the bat,and make it more abundant.It solved the problem of initial population randomness.At the same time,GCBA introduces the optimal solution of the current particle and the optimal solution of the current population to jump out of local optimal solutions,which can effectively avoid the premature and improve the global search ability of the algorithm.The results of the bat algorithm(BA),particle swarm optimization(PSO)and genetic algorithm(GA)on 10 data sets showed that the proposed algorithm has higher classification accuracy and stronger ability to jump out of local optimum.
作者 崔雪婷 李颖 范嘉豪 CUI Xue-ting;LI Ying;FAN Jia-hao(College of Computer Science and Technology,Jilin University,Changchun 130012,China;Symbol Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期488-491,498,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61602206).
关键词 蝙蝠算法 混沌映射 全局优化 局部最优 特征选择 bat algorithm chaotic mapping global optimum local optimum feature selection
  • 相关文献

参考文献2

二级参考文献20

  • 1王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 2孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. 被引量:78
  • 3Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[R]. Lausanne: Swiss Federal Institute of Technology Computer Engineering and Networks Laboratory, 2001. 被引量:1
  • 4Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi- objective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197. 被引量:1
  • 5Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary multiobjective optimization[J]. Evolutionary Computation, 2002, 10(3): 263-282. 被引量:1
  • 6Brockhoff D, Zitzler E. Are all objectives necessary? On dimensionality reduction in evolutionary multi-objective optimization[M]. Parallel Problem Solving from Nature- PPSN IX. Berlin: Springer Berlin Heidelberg, 2006: 533- 542. 被引量:1
  • 7Kennedy J. Particle swarm optimization[M]. Encyclopedia of Machine Learning. New York: Springer, 2010: 760-766. 被引量:1
  • 8Zhang Y, Gong D W, Geng N. Multi-objective optimization problems using cooperative evolvement particle swarm optimizer[J]. J of Computational and Theoretical Nanoscience, 2013, 10(3): 655-663. 被引量:1
  • 9Zhang Q, Li H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition[J]. IEEE Trans on Evolutionary Computation, 2007, 11 (6): 712-731. 被引量:1
  • 10Hu P, Li R, Cao L L, et al. Multiple swarms multi-objective particle swarm optimization based on decomposition[J]. Procedia Engineering, 2011, 15: 3371-3375. 被引量:1

共引文献218

同被引文献71

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部