期刊文献+

风电机组风向波动概率特性研究 被引量:6

Probability characteristics research of wind direction fluctuation for wind turbine
下载PDF
导出
摘要 波动性是风资源的固有特性。定量分析风向波动性对优化风电机组偏航系统控制参数有重要意义。文章采用风电机组自身测量的风资源数据,提出了基于波动幅值A和波动持续时间T的风向波动量描述方法。采用Weibull分布对风向波动量的边缘分布概率密度进行函数拟合,使用Frank-Copula函数对边缘分布进行连接,构建了二维风向波动量的联合概率密度函数。与实际运行数据比对分析,验证了该风向联合概率分布的正确性。文章提取了一组能够精确量化风电机组本地风向波动特性的概率指标集,为风电机组偏航系统的参数优化设置及提升机组发电效率提供了支持。 Based on the wind-resource data measured by the wind turbine itself,a method was proposed to describe the volatility by means offluctuation amplitude A and fluctuation duration T.The Weibull distribution was employed to fit the edge distribution probability density of the volatility,and the Frank-Copula function was used to connect the edge distributions,establishing the joint probability density function of two-dimensional volatility of wind direction,which was verified in comparison with the real operating data.A group of indicators were extracted for probability distribution,which can accuratelyquantify the local wind direction fluctuation behavior of wind turbine.It plays a significant role in the individual optimal settings for the parameters of yaw controlling system,and can be helpful in increasing the generating efficiency of wind turbine.
作者 宋鹏 柳玉 郭鹏 徐金晖 Song Peng;Liu Yu;Guo Peng;Xu Jinhui(North China Electric Power Research Institute Co.,Ltd.,Beijing 100045,China;School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
出处 《可再生能源》 CAS 北大核心 2020年第4期491-496,共6页 Renewable Energy Resources
基金 国家自然科学基金面上项目(51677067)。
关键词 风向波动 偏航系统 威布尔分布 COPULA函数 风向波动指标集 wind direction fluctuation yaw system Weibull distribution Copula function index set of volatility
  • 相关文献

参考文献2

二级参考文献27

  • 1韦艳华,张世英.Copula理论及其金融分析上的应用[M].北京:中国环境科学出版社,2008:10-23. 被引量:3
  • 2Mak W K, Morton D P, Wood R K. Mome Carlo bounding techniques for determining solution quality in stochastic programs[J]. Operations Research Letters, 1999(24): 47-56. 被引量:1
  • 3Niederreiter H . Random number generation and quai-monte carlo method [M]. Philadelphia: Society for Industrial and Applied Mathematics, 1992: 13-21. 被引量:1
  • 4Hoyland K, Kaut M, Stein W W. A Heuristic for mmoment-matching scenario generation[J]. Computational Optimization and Applications, 2003(4): 169-185. 被引量:1
  • 5Pflug G C. Version-independence and nested distributions in multistage stochastic optimization[J]. SIAM Journal on Optimization, 2009, 20(3): 1406-1420. 被引量:1
  • 6Ling Hu. Dependence patterns across financial markets:a mixed copula approach[J]. Applied Finificial Economics, 2006, 16(10): 717-729. 被引量:1
  • 7Kaut M, Stein W W. Shape-based scenario generation using copulas[J]. Computational Management Science, 2011, 8(1-2): 181-199. 被引量:1
  • 8Roger B N. An introduction to copulas[M]. New York: Springer-Verlag, 1998: 28-48. 被引量:1
  • 9厉则治.经验分布函数和理论分布函数[J].厦门大学学报:自然科学版,1956(2):69-75. 被引量:1
  • 10Kanungo T, David M M, Nathan S N, et al. An efficient K-means clustering algorithm : analysis and implementation[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 2002, 24(7): 881-892. 被引量:1

共引文献115

同被引文献77

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部