期刊文献+

基于脑机接口竞赛脑电数据集的运动想象识别影响因素分析 被引量:3

Influencing Factors Analysis in Motor Imagery Recognition Based on Brain Computer Interfacing Competition Electroencephalogram Databases
下载PDF
导出
摘要 针对两个常用的脑机接口(brain computer interfacing,BCI)竞赛运动想象任务脑电数据集——2003Ⅲ和2005Ⅲa,分类识别率差异较大的问题,结合运动想象脑电信号的生理基础,从信号噪声、受试者反应程度和C3、C4通道信号能量差异三个方面对两个数据集的数据进行了分析比较。结果表明:与2005Ⅲa数据集相比,2003Ⅲ数据集信噪比较高,受试者对运动想象任务的反应更明显,并且C3C4通道的信号能量差异趋势更标准,解释了对2003Ⅲ数据集的识别率普遍高于2005Ⅲa数据集这一现象,说明这三个因素是影响识别率的主要因素。研究为运动想象脑电数据有效性分析以及提高基于脑电的运动想象识别率提供了新的思路。 To solve the big difference in classification accuracy between two commonly used brain computer Interfacing(BCI)competition motor imagery databases,2003 III and 2005 IIIa and combining with the physiological basis of motor imagery electroencephalogram(EEG)signals,the data in two databases was analyzed from three aspects of signal noise,subject response degree and signal energy difference between channel C3 and channel C4.The analysis results show that,the 2003 III database has a higher signal-to-noise ratio,comparing with the 2005 IIIa database.The subjects respond more significantly to the motor imagery task,and the signal energy difference trend between channel C3 and channel C4 is more standard.The study results explain that the recognition rate of the 2003 III database is higher than that of the 2005 IIIa database,indicating that these three factors are the main factors influencing the recognition rate.The research provides a new idea for analyzing the validity of electroencephalogram,data and improving the recognition rate of motor imagery EEG.
作者 王雪娇阳 王连明 WANG Xue-jiao-yang;WANG Lian-ming(School of Physics,Northeast Normal University,Changchun 130024,China;School of Marine Science and Technology,Hainan Tropical Ocean University,Sanya 572022,China)
出处 《科学技术与工程》 北大核心 2020年第6期2369-2375,共7页 Science Technology and Engineering
基金 吉林省科技发展计划(20170204035GX,20170204050GX)。
关键词 运动想象 脑电数据集 信号噪声 反应程度 能量差异 motor imagery electroencephalogram database signal noise response degree energy difference
  • 相关文献

参考文献8

二级参考文献42

  • 1陈强,彭虎,江朝辉,冯焕清.独立式脑—计算机接口的离线实验及分析[J].生物医学工程学杂志,2006,23(3):478-482. 被引量:1
  • 2徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报(自然科学版),2007,37(4):629-633. 被引量:10
  • 3JEON Y W, NAM C S, KIM Y J, et al. Event-related(De)synchronization(ERD/ERS)during motor imagery tasks: Im-plication for brain-computer interfaces[J], International Jour-nal of Industrial. 2011,41(5) : 428-436. 被引量:1
  • 4HUANG N. SHEN Zt LONG S, et al. The empirical modedecomposition and the Hilbert spectrum for nonlinear andnon-stationary time series analysis [J]. Proceedings of theRoyal Society of London, 1998(454) t 903-995. 被引量:1
  • 5李小兵,初孟,邱天爽,鲍海平.一种基于经验模态分解的时频分布及其在EEG分析中的应用[J].生物医学工程学杂志,2007,24(5):990-995. 被引量:4
  • 6N P Castellanos, V A Makarov. Recovering EEG brain signals :artifact suppression with wavelet enhanced independent compo-nent analysis [J]. Journal of Neuroscience Methods, 2006,158(2):300-312. 被引量:1
  • 7T Zikov’et al. A wavelet based de-noising technique for ocularartifact correction of the electroencephalogram[ A] .Proceedingsof the Second Joint EMBS/BMES Conference[C]. Houston:Institute of Electrical and Electronics ^lgineers, 2002 . 98 -. 被引量:1
  • 8TP Jung, et al. Removing electroencephalographic artifacts:Comparison between ICA and PCA[A]. Proceedings of the1998 IEEE Signal Processing Society Workshop [ C ] . Cam-bridge : IEEE, 1998.63 - 72. 被引量:1
  • 9C A Joyce,I F Gorodnitsky, M Kutas. Automatic removal ofeye movement and blink artifacts from EEG data using blindconponent separation[ J]. Psychophysiology, 2004,41(2) : 313-325. 被引量:1
  • 10A Flexer,H Bauer,J Pripfl,et al.Using ICA for removal of oc-ular artifacts in EEG recorded from blind subjects[ J]. NeuralNetworks,2005,18 (7): 998 - 1005. 被引量:1

共引文献102

同被引文献26

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部