期刊文献+

深床反硝化生物滤池碳源优选研究 被引量:8

Carbon Source Optimization for Deep Bed Denitrification Biological Filter
原文传递
导出
摘要 借助深床反硝化生物滤池对葡萄糖和乙酸钠两种碳源的挂膜及硝态氮去除性能进行了对比研究。试验结果表明,当碳氮比为3时,连续投加葡萄糖36 h以上,滤池内部开始进入缺氧环境,此时出水硝态氮浓度开始降低;而乙酸钠在碳氮比为3.2时,需连续投加碳源26 h,出水DO才开始降低到0.5 mg/L以下,此时滤池出水硝态氮浓度开始降低。当碳源均按照葡萄糖和乙酸钠的最佳碳氮比进行投加时,硝态氮最大去除率分别为82%和85%;此外,当以葡萄糖作为碳源时,反洗排水中MLSS约为乙酸钠的3倍。 Biofilm formation and nitrate nitrogen removal performance were compared in a deep bed denitrification biological filter with glucose and sodium acetate as carbon sources. When the carbon and nitrogen ratio was 3,anoxic environment was formed inside the filter after continuous addition of glucose for more than 36 hours,and the effluent nitrate nitrogen began to decrease. When the carbon and nitrogen ratio was 3. 2,the effluent DO decreased to less than 0. 5 mg/L after continuous addition of sodium acetate for 26 hours,and the effluent nitrate nitrogen began to decrease. The maximum removal rates of nitrate nitrogen were 82% and 85%,respectively,when the carbon sources were added in accordance with the optimal carbon and nitrogen ratio of glucose and sodium acetate. In addition,MLSS of backwash drainage was about 3 times that of sodium acetate when glucose was used as carbon source.
作者 张朋锋 马乐宁 赵金 王程 赵书勤 ZHANG Peng-feng;MA Le-ning;ZHAO Jin;WANG Cheng;ZHAO Shu-qin(Xylem<China>Co.Ltd.,Shanghai 200051,China;China ENFI Engineering Corporation,Beijing 100038,China;Chongqing Three Gorges Water Beibei Drainage Co.Ltd.,Chongqing 400700,China)
出处 《中国给水排水》 CAS CSCD 北大核心 2020年第3期92-96,共5页 China Water & Wastewater
关键词 深床反硝化生物滤池 葡萄糖 乙酸钠 碳氮比 溶解氧 deep bed denitrification biological filter glucose sodium acetate carbon and nitrogen ratio dissolved oxygen
  • 相关文献

参考文献4

二级参考文献61

  • 1徐亚同.废水反硝化除氮[J].上海环境科学,1994,13(10):8-12. 被引量:53
  • 2徐亚同.pH值、温度对反硝化的影响[J].中国环境科学,1994,14(4):308-313. 被引量:107
  • 3许文峰,李桂荣,汤洁.不同碳源对缺氧生物滤池生物脱氮的试验研究[J].吉林大学学报(地球科学版),2007,37(1):139-143. 被引量:9
  • 4Pujol R. Process improvements for upflow submerged biofilters [ J ]. Water 21,2000,32 ( 1 ) :25 - 29. 被引量:1
  • 5Seguret F, Racauh Y. Hydrodynamic behavior of a full scale submerged biofilter and its possible influence on performance [ J ]. Water Sci Technol, 1998,38 ( 8/9 ) : 249 - 256. 被引量:1
  • 6Chen Y D, Barker J F,Gui L. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol : A microcosm study [ J ]. J Contam Hydrol, 2008,96 ( 1/4 ) : 17 - 31. 被引量:1
  • 7Oehmen A,Lemos P C, Carvalho G,et al. Advances in enhanced biological phosphorus removal: From micro to macro scale [ J]. Water Res, 2007,41 ( 11 ) :2271 - 2300. 被引量:1
  • 8Oehmen A, Saunders A M, Vives M T,et al. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources [ J]. J Biotechnol,2006,123 ( 1 ) :22 - 32. 被引量:1
  • 9Oehmen A, Carvalho G, Lopez-Vazquez C M, et al. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms [ J ]. Water Res, 2010,44 (17) :4992 -5004. 被引量:1
  • 10Lemos P C, Serafim L S, Reis M A. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding [ J]. J Bioteehnol,2006,122(2) :226 -238. 被引量:1

共引文献28

同被引文献54

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部