期刊文献+

量子噪声随机流密码中密钥扩展模块的研究 被引量:3

Research on key expansion module of quantum noise random stream cipher
下载PDF
导出
摘要 密钥扩展是量子噪声随机流密码(QNRC)高效利用量子密钥分发(QKD)密钥的手段,通常使用经典加密方法来进行密钥扩展。高级加密标准(AES)和Hash算法因其破译难度大,在QNRC实验中常用作密钥扩展。根据分组加密的工作模式,合理设计了计数器(CTR)模式和密码分组链接(CBC)模式下的Hash扩展方案。并且对不同扩展方案下产生的运行密钥流进行了NIST随机性检测,测试结果表明CTR和CBC模式下的AES和Hash扩展都能通过随机性检测。尤其是CTR模式下的Hash扩展,输入长度可以灵活控制,能较好地适应现代高速光网络的不同需求。 Key expansion is an efficient way for quantum noise random stream cipher(QNRC) to use quantum key distribution(QKD) keys.Generally,the classical encryption methods are often used for key expansion in QNRC experiments,such as advanced encryption standard(AES) and Hash algorithms,because of the difficulty of deciphering.According to the working mode of block cipher,the Hash expansion schemes of counter(CTR) mode and cipher block link(CBC) mode are reasonably designed.Moreover,NIST random test is implemented on the running key streams generated under different expansion schemes.The test results show that AES and Hash expansion schemes both in CTR and CBC modes can pass the test of randomicity.Especially for the Hash expansion in CTR mode,the input length of which can be flexibly controlled,so it can better adapt to different requirements of modern high-speed optical network.
作者 史海勤 蒲涛 郑吉林 谭业腾 陈毓锴 SHI Haiqin;PU Tao;ZHENG Jilin;TAN Yeteng;CHEN Yukai(Communications Engineering College,Army Engineering University of PLA,Nanjing 210007,China)
出处 《量子电子学报》 CAS CSCD 北大核心 2020年第2期196-201,共6页 Chinese Journal of Quantum Electronics
基金 (国家自然科学基金,61475193,61504170) (江苏省自然科学基金,BK20140069)。
关键词 量子信息 密钥扩展 量子噪声随机流密码 HASH算法 计数器模式 密码分组链接模式 quantum information key expansion quantum noise random stream cipher Hash algorithm counter mode cipher block link mode
  • 相关文献

参考文献4

二级参考文献53

  • 1吴敏,廖常俊,刘颂豪.两种扩展量子密钥库的方法[J].量子电子学报,2005,22(3):387-391. 被引量:1
  • 2郭光灿.量子密码——新一代密码技术[J].物理与工程,2005,15(4):1-4. 被引量:11
  • 3BENNETT C H, BRASSARD G. Quantum cryptography: public key distribution and coin tossing [C]. //in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York), 1984, 175. 被引量:1
  • 4BARNETT S M, PHOEIX S J D. Bell's inequality and rejected-data protocols for quantum cryptography [J]. J Mod Opt, 1993, 40: 1443. 被引量:1
  • 5BARNETT S M, et al. Eavesdropping stategies and rejected data protocols in quantum cryptography [J]. J Mod Opt, 1993, 40: 2501. 被引量:1
  • 6EKERT A K, PALMA G M. Quantum Cryptography with interferometric quantum Entanglement [J]. J Mod Opt, 1994, 41: 2413. 被引量:1
  • 7PHILIP A HISKETT, et al. Eighty kilometer transmission experiment using an InGaAs/InP SPAD based quantum cryptography receiver operating at 1.55 μm [J]. J Mod Opt, 2001, 48: 1957. 被引量:1
  • 8KOSAKA H, et al. Single-photon interference experiment over 100 km for quantum cryptography system using balanced gated-mode photon detector [J]. Elec Lett, 2003, 39: 1199. 被引量:1
  • 9RUKHIN A, et al. A Statistical Test Suite for Random and Pseudo-random Number Generators for CryptographicApplications, NIST (2001),http://csrc.nist.gov/rng/. 被引量:1
  • 10Wiesner S. Conjugate coding [J]. Sigact News, 1983, 15(1): 78-88. 被引量:1

共引文献7

同被引文献4

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部