期刊文献+

融合空洞卷积与注意模型的U型视盘分割 被引量:3

U-shaped optic disc segmentation based on dilated convolution and attention model
下载PDF
导出
摘要 针对现有的算法对视盘边缘分割精度不高和视盘周围存在大量噪音等难点,提出一种融合空洞卷积与注意门的U型卷积神经网络视盘分割算法。在预处理阶段,利用图像RGB通道的线性组合提取各通道颜色特征信息,利用形态学滤波技术强化视盘边缘信息。在分割阶段,利用多尺度空洞卷积提高感受野,通过注意门提升视盘权重信息,由SoftMax激活函数分割视盘与背景信息。在DRIONS-DB眼底图像数据集上进行的仿真结果表明,视盘分割准确率、精确率和重合率分别达到99.83%,94.84%和97.35%。 Aiming at the difficulties of utilizing existing algorithms such as low precision of optic disk edge segmentation and lots of noise around the optic disk,a U-shaped convolution neural network optic disk segmentation algorithm based on dilated convolution and attention gate was proposed.In the preprocessing stage,the color feature information of each channel was extracted by the linear combination of RGB channels,and multi-scale morphological filtering was used to enhance the edge information of the optic disk.In the segmentation stage,multi-scale dilated convolution was used to improve the receptive field,and attention gates were used to enhance the optic disk weight information.The disc was segmented using the SoftMax activation function.The simulation experiments on DRIONS-DB fundus image data set show that the accuracy,precision and coincidence rates of optic disc segmentation are 99.83%,94.84%and 97.35%respectively.
作者 梁礼明 盛校棋 熊文 郭凯 LIANG Li-ming;SHENG Xiao-qi;XIONG Wen;GUO Kai(School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《计算机工程与设计》 北大核心 2020年第3期808-814,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(51365017、61463018) 江西省自然科学基金项目(20132BAB203020) 江西省教育厅科学技术研究重点基金项目(GJJ170491)。
关键词 空洞卷积 注意门 卷积神经网路 视盘分割 形态学滤波 dilated convolution attention gates convolutional neural network optic disk morphological filtering
  • 相关文献

参考文献7

二级参考文献66

  • 1李天庆,张毅,刘志,胡东成.Snake模型综述[J].计算机工程,2005,31(9):1-3. 被引量:47
  • 2陈延梅,吴勃英.基于数学形态学的图像增强方法[J].哈尔滨工业大学学报,2006,38(6):906-908. 被引量:12
  • 3Zhu Youlian, Huang Cheng. An adaptive histogram equalization algorithm on the image gray level mapping [J]. Physics Proce- dia, 2012, 25 (1): 601-608. 被引量:1
  • 4Sundaram M, Ramar K, Arumugam N, et al. Histogram modi- fied local contrast enhancement for mammogram images[J]. Applied Soft Computing, 2011 (2): 5809-5816. 被引量:1
  • 5Tarik Arid, Yucel Altunbasak Image local contrast enhancement u- sing adaptive non-linear filter [C] // International Conference on Image Precessing Inaage Processing, 2006: 2881-2884. 被引量:1
  • 6Chanda Bhahatosh. Morphological algorithms for image proces- sing [J]. IETE Technical Review, 2008 (25) : 9-17. 被引量:1
  • 7Bai Xiangzhi. Image enhancement through contrast enlargement using the image regions extracted by multiscale top-hat by re- construction[J]. Optik, 2013, 124 (20): 4421-4424. 被引量:1
  • 8Ishita De, Bhabatosh Chanda, Buddhajyoti Chattopadhyay. Enhancing effective depth-of-field by image fusion using mathematical morphology[J].Image and Vision Computing, 2006, 24 (3): 1278-1287. 被引量:1
  • 9Susanta Mukhopadhyay, Bhabatosh Chanda. A multiscale morphological approach to local contrast enhancement [J].Signal Processing, 2006, 80 (1): 685-696. 被引量:1
  • 10Bai Xiangzhi, Zhou Fugen, Xue Bindang. Toggle and top-hat based morphological contrast operators [J]. Computers Electrical Engineering, 2012, 38 (5): 1196-1204. 被引量:1

共引文献45

同被引文献9

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部