期刊文献+

基于优化极限学习机的工业控制系统入侵检测 被引量:12

Intrusion detection of industrial control system based on optimized extreme learning machine
下载PDF
导出
摘要 为解决极限学习机(ELM)随机给定输入权值和隐含层结点的阈值,导致泛化能力和精度不理想的问题,提出混合自适应量子粒子群(HAQPSO)优化算法对输入权值和隐含层结点的阈值进行参数寻优。在量子粒子群优化算法的基础上,加入差分策略和Levy飞行策略,采用自适应改变的控制方法控制收缩-扩张系数,有效避免算法的早熟,增强算法全局寻优能力,通过对典型函数的测试验证了该算法的优越性。构建基于HAQPSO优化ELM的工控入侵检测模型,将仿真结果与其它算法进行比较,HAQPSO优化后的ELM在准确率、精确率和召回率等指标上都有明显提升。 To deal with the problem of poor generalization ability and low accuracy caused by randomly given input weights and thresholds of hidden layer nodes of extreme learning machine(ELM),a hybrid adaptive quantum particle swarm optimization(HAQPSO)algorithm was proposed to optimize the parameters of input weights and thresholds of hidden layer nodes.To prevent the premature convergence problem and improve the global-optimization capability,based on the quantum particle swarm optimization(QPSO)algorithm,the difference strategy and Levy flight strategy were added,and the contraction-expansion coefficient was controlled using adaptive control method,the superiority of the algorithm was verified by the test of typical functions.The industrial control system intrusion detection model based on HAQPSO optimized ELM was constructed,and the simulation results were compared with other algorithms.The ELM optimized by HAQPSO has obvious improvement in detection rate,precision rate,and recall rate.
作者 赵国新 陈志炼 魏战红 刘昱 宋非凡 郭家伟 ZHAO Guo-xin;CHEN Zhi-lian;WEI Zhan-hong;LIU Yu;SONG Fei-fan;GUO Jia-wei(College of Information Technology,Beijing Institute of Petrochemical Technology,Beijing 102617,China;College of Information Science and Technology,Beijing University of Chemical Technology,Beijing 100029,China;Aerospace Guanghua Electronic Technology Limited Company,Beijing 100070,China;Freiboda(Beijing)Automation Equipment Limited Company,Beijing 100176,China)
出处 《计算机工程与设计》 北大核心 2020年第3期608-613,共6页 Computer Engineering and Design
基金 北京市自然科学基金项目(4174089) 北京市教委科研科技计划面上基金项目(KM201610017007)。
关键词 极限学习机 量子粒子群优化算法 差分策略 Levy飞行策略 工控入侵检测 extreme learning machine quantum particle swarm optimization algorithm differential strategy Levy flight strategy industrial control system intrusion detection
  • 相关文献

参考文献10

二级参考文献76

  • 1王恩元,刘晓斐,李忠辉,何学秋.电磁辐射技术在煤岩动力灾害监测预警中的应用[J].辽宁工程技术大学学报(自然科学版),2012,31(5):642-645. 被引量:41
  • 2康燕,孙俊,须文波.具有量子行为的粒子群优化算法的参数选择[J].计算机工程与应用,2007,43(23):40-42. 被引量:19
  • 3PAN W T. A new fruit fly optimization algorithm: Taking the finan- cial distress model as an example[ J]. Knowledge-Based Systems, 2012, 26(1): 69-74. 被引量:1
  • 4MANTEGNA R N. Fast accurate algorithm for numerical simulation of levy stable stochastic process[ J], Physical Review E, 1992, 49 (5) : 451 -458. 被引量:1
  • 5Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501. 被引量:1
  • 6Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Trans on Evolutionary Computation, 2009, 13(2): 398-417. 被引量:1
  • 7Cao J, Lin Z, Huang G B. Self-adaptive evolutionary extreme learning machine[J]. Neural Processing Letters, 2012, 36(3): 285-305. 被引量:1
  • 8Zhu Q Y, Qin A K, Suganthan P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition, 2005, 38(10): 1759-1763. 被引量:1
  • 9Han F, Yao H F, Ling Q H. An improved evolutionary extreme learning machine based on particle swarm optimization[J]. Neurocomputing, 2013, 116: 87-93. 被引量:1
  • 10Miche Y, Sorjamaa A, Bas P, et al. OP-ELM: Optimally pruned extreme learning machine[J]. IEEE Trans on Neural Networks, 2010, 21(1): 158-162. 被引量:1

共引文献294

同被引文献150

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部