期刊文献+

考虑季节特性及节点电压偏移的储能系统优化配置 被引量:3

The Optimal Configuration of Energy Storage System Considering Seasonal Characteristics and Node Voltage Deviation
下载PDF
导出
摘要 考虑到可再生能源渗透率的增加以及储能装置的接入,研究了含可再生能源配电网的储能优化问题。选用蓄电池作为储能装置,建立了数学模型,并对含风电和光伏的配电系统进行储能优化配置,以系统的经济性和稳定性为优化目标,分别建立了单目标和多目标优化模型。采用改进粒子群优化算法,选择储能容量、储能功率和储能位置作为控制变量进行优化计算。最后结合不同季节风电、光伏和负荷的波动数据,选取含分布式电源的IEEE 33节点配电网系统,对其进行潮流计算及储能优化配置,由此验证了本文配置方法的有效性。 Considering the increase of renewable energy permeability and the access of energy storage devices,this paper studies the energy storage optimization of distribution network with renewable energy.The storage battery is selected as the energy storage device,whose mathematical model is also established,and the optimal allocation of energy storage for the distribution system with wind power and photovoltaic power is carried out.Taking the economical efficiency and stability of the system as the optimization objective,the single-objective and multi-objective optimization models are established respectively.Taking energy storage capacity,energy storage power and energy storage location as control variables,an improved particle swarm optimization(IPSO)algorithm is used to optimize the cost of energy storage.Finally,combined with the fluctuation data of wind power,photovoltaic and load in different seasons,the IEEE33 node distribution network system with distributed generation is selected to calculate its power flow and optimize its energy storage configuration,which verifies the effectiveness of the configuration proposed in this paper.
作者 吴仁光 王云葛 李凯鹏 林明河 彭家从 孙圳 宁轲 WU Renguang;WANG Yunge;LI Kaipeng;LIN Minghe;PENG Jiacong;SUN Zhen;NING Ke(Xiangshan Electric Power Industry Co.,Ltd.,Ningbo 315700,China;State Grid Zhejiang Xiangshan Power Supply Co.,Ltd.,Ningbo 315700,China;School of New Energy,China University of Petroleum(East China),Qingdao 266580,China)
出处 《电力科学与工程》 2020年第1期18-24,共7页 Electric Power Science and Engineering
基金 国家电网公司科技项目“面向多种应用场景的配网台区侧储能系统容量优化配置与运行策略研究”。
关键词 风光储联合系统 储能蓄电池模型 储能优化配置 改进粒子群优化算法 多目标优化 wind-PV-ES hybrid system energy storage battery model optimal allocation of energy storage improved particle swarm optimization algorithm multi-objective optimization
  • 相关文献

参考文献16

二级参考文献117

共引文献485

同被引文献49

引证文献3

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部