期刊文献+

基于BIM技术的大型钢结构建筑可靠性检测方法研究 被引量:6

Research on large-scale steel structure building reliability detection method based on BIM technology
下载PDF
导出
摘要 针对现有大型钢结构建筑可靠性检测方法执行效率低、检测精度低等问题,设计基于BIM技术的大型钢结构建筑可靠性检测方法。首先以大型建筑钢结构为研究对象,运用BIM技术建立合理的建筑钢结构的功能函数用于描述极限状态,以极限状态方程为约束条件构建大型钢结构建筑可靠性分析约束优化模型。其次使用曾广乘子法将约束优化模型转变为无约束优化模型,使用模拟退火算法对该模型进行求解。最后模拟大型建筑钢结构形变状态设计对比实验,实验结果表明与同类检测方法相比,应用基于BIM技术的大型钢结构建筑可靠性检测方法后,检测精度提升97.77%以上,有效缓解了检测效率低下情况。 As the low execution efficiency and detection precision of reliability detection methods for existing large-scale steel structure buildings,a large-scale steel structure building reliability detection method based on BIM technology is designed.The large-scale building steel structure is taken as the research object,and the functional function of the reasonable building steel structure is established with BIM technology to describe the limit state,and the constraint optimization model for reliability analysis of large steel structures is built taken the limit state equation as the constraint condition.The constrained optimization model is transformed into the unconstrained optimization model by means of the augmented multiplier method,which is solved by means of the simulated annealing algorithm.A comparative experiment to simulate the deformation state of large-scale building steel structure is designed.The experimental results show that,in comparison with the similar detection methods,after the application of BIM technology based reliability detection method for large-scale steel structure buildings,the detection precision is improved to more than 97.77%,which effectively alleviates the detection inefficiency.
作者 田国锋 王学民 郭慧娟 TIAN Guofeng;WANG Xuemin;GUO Huijuan(Hebei University of Water Resources and Electric Engineering,Cangzhou 061000,China)
出处 《现代电子技术》 北大核心 2020年第6期90-92,96,共4页 Modern Electronics Technique
基金 福建省自然科学基金项目(2017J01669) 河北省教育厅指导项目(Z2017120)。
关键词 大型钢结构 可靠性检测 BIM技术 无约束优化模型 参数设定 对比验证 large-scale steel structure reliability detection BIM technology unconstrained optimization model parameter setting comparison validation
  • 相关文献

参考文献10

二级参考文献50

共引文献37

同被引文献26

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部