期刊文献+

煤矿机械振动信号预测研究 被引量:2

Research on vibration signal prediction of coal mine machinery
下载PDF
导出
摘要 根据煤矿机械振动信号高低频组成成分变化规律的差异,提出了一种基于经验模态分解(EMD)和支持向量机(SVM)的煤矿机械振动信号组合预测方法。将滚动轴承振动信号进行EMD分解,得到相对平稳的本征模态函数(IMF)分量,并将波动程度相近的IMF分量进行重构,得到高频子序列和低频子序列,采用SVM分别对高频子序列和低频子序列进行预测,将2个预测结果叠加,得到最终预测值。选取轴承实验数据对组合预测方法的有效性进行验证,结果表明该方法的均方根误差、平均绝对误差和平均绝对百分比误差均小于直接预测方法。将该组合预测方法应用于某选煤厂主井带式输送机滚动轴承状况预测,预测结果与实际情况相符。 According to variation differences of high frequency and low frequency components of coal mine machinery vibration signal,a combined vibration signal prediction method of coal mine machinery based on empirical mode decomposition(EMD)and support vector machine(SVM)is proposed.The vibration signal of rolling bearing is decomposed by EMD to obtain relatively stable instrinsic mode function(IMF)components,and the IMF components with similar degree of the fluctuation are reconstructed to obtain high-frequency and low-frequency subsequences.The high-frequency subsequence and low-frequency subsequence are predicted by SVM respectively,and then the final prediction value is obtained after superposing the two prediction results.The bearing experimental data are selected to verify effectiveness of the method.The results show that the root mean square error,average absolute error and average absolute percentage error of the method are smaller than that of the direct prediction method.The results show that the root mean square error,average absolute error and average absolute percentage error of the combined predition method are all smaller than those of direct prediction method.The combined prediction method is applied to condition prediction of rolling bearing of the belt conveyor in main shaft of a coal preparation plant,and the prediction results are consistent with actual situation.
作者 肖雅静 李旭 郭欣 XIAO Yajing;LI Xu;GUO Xin(CCTEG Tiandi Science&Technology Co.,Ltd.,Beijing 100013,China)
出处 《工矿自动化》 北大核心 2020年第3期100-104,共5页 Journal Of Mine Automation
基金 中国煤炭科工集团有限公司科技创新创业资金专项项目(2018MS023)。
关键词 煤矿机械振动信号 振动信号预测 经验模态分解 本征模态函数 支持向量机 高频子序列 低频子序列 滚动轴承状况预测 vibration signal of coal mine machinery vibration signal prediction EMD IMF SVM high frequency subsequence low frequency subsequence condition prediction of rolling bearing
  • 相关文献

参考文献13

  • 1吕建新,吴虎胜,王茂生,吴庐山.基于EMD和SVM的农用柴油机故障诊断研究[J].安徽农业科学,2010,38(17):9225-9228. 被引量:3
  • 2华伟..基于多小波变换的矿用齿轮箱故障诊断研究[D].中国矿业大学(北京),2017:
  • 3董绍江..基于优化支持向量机的空间滚动轴承寿命预测方法研究[D].重庆大学,2012:
  • 4李赟恒..基于BP神经网络的采煤机截割部故障诊断研究[D].西安科技大学,2017:
  • 5林超..结合异常检测算法的轴承故障检测研究[D].浙江大学,2017:
  • 6关长江..采煤机摇臂故障诊断问题研究[D].辽宁工程技术大学,2017:
  • 7胡世杰..基于符号化时间序列分析的轴承故障诊断方法研究[D].东南大学,2015:
  • 8李彩虹..两类组合预测方法的研究及应用[D].兰州大学,2012:
  • 9张鑫媛..基于数据驱动的采煤机摇臂传动系统故障诊断方法研究[D].西安科技大学,2019:
  • 10薛小兰,温秀兰,张鹏.基于遗传神经网络的机械振动信号预测[J].弹箭与制导学报,2007,27(3):239-240. 被引量:2

二级参考文献27

  • 1罗成汉.基于MATLAB神经网络工具箱的BP网络实现[J].计算机仿真,2004,21(5):109-111. 被引量:127
  • 2李力,廖湘辉,张圆.循环平稳度无量纲指标应用于滚动轴承状态分类[J].机械传动,2005,29(3):21-23. 被引量:6
  • 3LIU B,LING S F.On the selection of informative wavelets for machinery diagnosis[J].Mechanical Systems & Signal Processing,1999,13(1):145-162. 被引量:1
  • 4HUANG NORDEN E,ZHENG SHEN,LONG STEVEN R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc R Soc Lond A,1998,454:903-995. 被引量:1
  • 5VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Spring Verag,1995. 被引量:1
  • 6vapnikVN 许建华 张学工.统计学习理论[M].北京:电子工业出版社,2004.. 被引量:4
  • 7Tay F E H, Cao I. J. Application of support vector machines in financial time series forecasting[J]. Omega, 2001, 29(4): 309-317. 被引量:1
  • 8Thissen U, Brakel R V, Weijer A P D, et al. Using support vector machines for time series prediction[J].Chemometrics and Intelligent Lalzvoratory Systems,2003, 69(1-2): 35-49. 被引量:1
  • 9Momma M, Bennett K P. A pattern search method for model selection of support vector regression[A]. Proceedings of the SIAM International Conference on Data Mining[C]. Philadelphia: SIAM, 2002. 261-274. 被引量:1
  • 10Eshelman L J,Schaffer J D.Real-coded genetic algorithms and interval-schemata[J].Foundations of Genetic Algorithms,1993,2:187-202. 被引量:1

共引文献30

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部