期刊文献+

面向大规模数据的特征趋势推理算法

Characteristic Trend Reasoning Algorithm for Large-Scale Data
下载PDF
导出
摘要 提出一种面向大规模数据的特征趋势推理算法。首先,采用Hash函数抽取大规模数据样本,使用Pam聚类算法和并行K-means聚类算法对大规模数据样本进行聚类,获取最佳聚类结果后,提取大规模数据聚类的动态特征;其次,采用基于特征趋势规则的推理算法,构建大规模数据特征的趋势规则推理模型,并通过累计趋势规则方法设计趋势规则算法,推理大规模数据特征趋势,解决了推理结果误差较大的问题。实验结果表明,该算法对大规模数据特征趋势推理的准确率均值为98.10%,推理速度增长率为50%,推理耗时最大均值仅为114.25s,能快速准确地完成数据特征趋势推理。 The author proposed a characteristic trend reasoning algorithm for large-scale data.Firstly,Hash function was used to extract large-scale data samples,Pam clustering algorithm and parallel K-means clustering algorithm were used to cluster large-scale data samples.After obtaining the best clustering results,the dynamic characteristics of large data clustering were extracted.Secondly,a reasoning algorithm based on characteristic trend rules was used to construct a trend rule reasoning model for large-scale data characteristics,and a trend rule algorithm was designed by the method of cumulative trend rule,which could infer the trends of large-scale data characteristics,and solved the problem of large errors of reasoning results.The experimental results show that the average accuracy of the proposed algorithm for large-scale data characteristic trend reasoning is 98.10%,the growth rate of reasoning speed is 50%,and the maximum average reasoning time-consuming is only114.25 s,which can quickly and accurately complete data characteristic trend reasoning.
作者 吴春琼 WU Chunqiong(School of Information Science and Engineering,Xiamen University,Xiamen 361005,Fujian Province,China;School of Business,Yango University,Fuzhou 350015,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2020年第2期364-370,共7页 Journal of Jilin University:Science Edition
基金 福建省社会科学基金(批准号:FJ2016B157) 福建省社科A类科研项目(批准号:JA12499S).
关键词 大规模数据 特征 趋势 推理 动态特征 累计趋势规则 large-scale data characteristics trend reasoning dynamic characteristics cumulative trend rule
  • 相关文献

参考文献13

二级参考文献85

  • 1王兰云,赵拥军.多目标跟踪数据关联及其改进算法[J].微计算机信息,2005,21(12S):190-191. 被引量:10
  • 2雷英杰,王宝树,路艳丽.基于直觉模糊逻辑的近似推理方法[J].控制与决策,2006,21(3):305-310. 被引量:65
  • 3韩光臣,孙树栋,司书宾,陈东明.基于模糊概率Petri网系统的故障诊断仿真研究[J].计算机集成制造系统,2006,12(4):520-525. 被引量:13
  • 4Canny J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(1):679-697. 被引量:1
  • 5Pal K S,King R A.On edge detection of X-ray imagesusing fuzzy sets[J].IEEE Transactions on PAMI,1983,5(1):69-77. 被引量:1
  • 6Haji M,Bui T D.Removal of noise patterns in handwrittenimages using expectation maximization and fuzzy inferencesystems[J].Pattern Recognition,2012,45(12):4237-4249. 被引量:1
  • 7Lu S,Wang Z,Shen J.Neuro-fuzzy synergism to the intelligentsystem for edge detection and enhancement[J].PatternRecognition,2003,36(10):2395-2409. 被引量:1
  • 8Liang L R,Looney C G.Competitive fuzzy edge detection[J].Applied Soft Computing,2003,3(2):123-137. 被引量:1
  • 9Hu Liming,Cheng H D,Zhang Ming.A high performanceedge detector based on fuzzy inference rules[J].InformationSciences,2007,177(21):4768-4784. 被引量:1
  • 10Wu H J,Su Y L,Lee S J.A fast method for computingthe centroid of a type-2 fuzzy set[J].IEEE Trans on Systems,Man,and Cybernetics,2012,42(3):764-777. 被引量:1

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部