期刊文献+

无源时差定位系统最优布站方法研究 被引量:11

Study on Optimal Station Distribution and Performance of Passive Time Difference Localization System
下载PDF
导出
摘要 为提高基于到达时间差(Time Difference of Arrival,TDOA)的三维无源定位系统的定位精度,提出了一种考虑基站时差测量性能差异的最优布站方法,该方法通过求解目标所在区域定位误差的克拉美罗下界(Cramer-Rao Lower Bound,CRLB),以定位误差CRLB的迹的平均值最小为优化准则,采用粒子群算法对指定区域进行最优布站仿真研究。仿真结果表明,该方法求解的最优布站位置与假设TDOA测量误差为恒定高斯分布时求解的位置相比,提高了目标区域的整体定位精度;与用遗传算法求解最优布站位置相比,其收敛速度更快,更适用于需要快速作出反应的侦察定位场景。 In order to improve the three-dimensional passive localization accuracy of TDOA(time difference of arrival),an optimal station distribution method considering the different TDOA measure performance is proposed.The adaptive particle swarm optimization is used to study the optimal distributed station simulation in the designated area by minimizing the average of CRLB(Cramer-Rao lower bound)trace of location error in target region.The simulation results show that the method improves the overall positioning accuracy of the target area compared with the assumption that the TDOA measurement error is constant Gaussian distribution.And the proposed method has faster convergence speed compared with the optimal station location solved by the genetic algorithm,thus it is more suitable for detection and positioning scenes requiring quick response.
作者 夏伟 罗明 赵美霞 XIA Wei;LUO Ming;ZHAO Meixia(Key Lab of Electronic Information Countermeasure and Simulation Technology,Ministry of Education,Xidian University,Xi’an 710071,China)
出处 《雷达科学与技术》 北大核心 2020年第1期34-38,共5页 Radar Science and Technology
关键词 TDOA测量误差 最优布站 克拉美罗下界 粒子群算法 TDOA measurement error optimal station distribution Cramer-Rao lower bound(CRLB) particle swarm optimization
  • 相关文献

参考文献7

二级参考文献27

  • 1高虎,俞志强.基于四站时差定位原理的星型布站分析[J].空军雷达学院学报,2004,18(3):22-24. 被引量:21
  • 2王瀚,钟丹星,周一宇.不规则布站时差定位系统定位精度分析[J].现代电子技术,2007,30(7):19-21. 被引量:17
  • 3杨平,郑金华.遗传选择算子的比较与研究[J].计算机工程与应用,2007,43(15):59-62. 被引量:46
  • 4Chan Y T, Ho K C. A Simple and Efficient Estimator for Hyperbolic Location. IEEE Trans. on SP, 1994, 42 (8): 1 905-1 915. 被引量:1
  • 5HUANG B Q, XIE L H, YANG Z. TDOA-based Source Localization with Distance-Dependent Noises [J]. IEEE Transactions on Wireless Communications, 2015, 14(1): 468-480. 被引量:1
  • 6EI-GEMAYEL N, JAKEL H, JONDRAL F K. Error Analysis of a Low Cost TDoA Sensor Network [C]//2014 IEEE on Position, Location and Navigation Symposium. Piscataway: IEEE, 2014: 1040-1045. 被引量:1
  • 7CHAKRABORTY J, OTTOY G, GELAUDE M, et al. Acoustic Localization of Unknown Sources with Wireless Sensor Nodes [C]//2014 17th International Conference on Computer and Information Technology. Piscataway: IEEE, 2014 : 488-493. 被引量:1
  • 8BISHOP A N, FIDAN B, ANDERSON B D. Optimality Analysis of Sensor-target Localization Geometries [J]. Automatica, 2010, 3(46): 479-492. 被引量:1
  • 9YANG B, SCHEUING J. Cramer-Rao Bound and Optimum Sensor Array for Source Localization from Time Differences of Arrival [C]//Proceedings of the IEEE International Conference Acoustics, Speech and Signal Processing: 4. Piscataway: IEEE, 2005: Ⅳ961-Ⅳ964. 被引量:1
  • 10BISHOP A N, FIDAN B, ANDERSON B D. Optimality Analysis of Sensor-target Geometries in Passive Localization: Part 1-Bearing only localization [C]//Proceedings of the International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Piscataway: IEEE, 2007: 7-12. 被引量:1

共引文献46

同被引文献149

引证文献11

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部